MODEL ANSWERS TO THE SECOND HOMEWORK

1. Possibly replacing p by a slightly smaller number we may assume
that u is harmonic on the closed disc |z| < p. In particular we may
assume that u is continuous on the closed disc z| = p. Let U be the
restriction of w to the circle |z| = p. Let v = Py be the harmonic
function given by the Poisson integral.

Pick € > 0 and let

w(z) =u(z) —v(z) + elogr/p.

As u(z) is bounded and v(z) is harmonic on the whole disc, w(z) tends
to —oo as z tends to zero. Consider a circle of radius ¢ centred at the
origin. Then w is a harmonic function on the annulus 6 < |z| < p.
The maximum is achieved on the boundary. On the circle |z| = p,
w(z) = 0 and if § > 0 is sufficiently small then w(z) < 0 on |z| = §.
Thus w(z) < 0. Letting € > 0 we see that

u(z) < wv(z).

Replacing u by —u we get the reverse inequality. Thus u(z) = v(z) and
u extends to a harmonic function v.
2. Suppose that f(z) is identically zero on the circle |z| = r;. By
the reflection principle one can extend f(z) to a holomorphic function
in a neighbourhood of any point where |z| = r; (just apply a M&bius
transformation so that the circle |z| = 71 is mapped to the real axis).
But then f(z) is identically zero and there is nothing to prove. Similarly
if f(2) is identically zero on |z| = 1. Thus we may assume that M (r)
and M (rqg) are positive.
Let

u(z) = alog |z +log[f(2)|
Then u is harmonic away from the zeroes of f(z), as it is a linear
combination of harmonic functions. Put small circles around the zeroes
of f(z). By the maximum principle the maximum of u occurs on the
boundary, which is either on the two big circles |z| = r; and |z| = ry
or on one of the small circles. But if the circles are small enough then
log |f(z)| is large and negative so that the maximum is on one of the

big circles.
Thus

alogr +log M(r) < max(alogr; + log M(r1),alogry + log M(rs)).
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Now pick a so that
alogr; + log M(r;)
is independent of i. Then
__log M(rs) —log M(r1)
logr; — logrs

and so
log M (r) < a(logry — logr) + log M (r3)
(log M (r3) —log M (r1))(log ro — log r) + log M (rs)(log r1 — logrs)
(logr — logms)
log M (r9)(logr — logr) + log M (r1))(log ra — logr)
- (logry — log )
= log M (r1)* M (ry) .

If we have equality then u(z) must be constant. But then
()] = "],

for some constant b, so that
fle) = €2

for some constant 0.
3. Let

f:A— H,
be the Mobius transformation given by

w41
w— 2 =1

1—w
Then f is biholomorphic, and sends the unit circle to the upper half-
plane. The inverse transformation is

z—1

Z+i
Let V/(0) = U(f(0)) = U(§). Then V is piecewise continuous and

Z—w =

L[ 1—|w]?
P, = — ——V(0)db
V(w> 277'/0 |629 _w|2 ( ) )
is harmonic in the unit disc with boundary values V' (6) at points of

continuity. Now make the substitution

£

E+1i
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206 +1i)ds  2d¢

P e
and
Ao s e e
= (& + 1)5”2 +(y+ i)é:sj; (y — 1)
B (52“)4(96—451;%1/2
G 1)m,

which gives the result.
4. Let u be a harmonic function on the upper half plane, which is
continuous on the real axis. Let U be the restriction of u to the real
axis and let Py(z) be the Poisson integral. Then u — Py is harmonic
and zero on the real axis. Now suppose that u is bounded. Pick € > 0
and consider
v(2) = u(z) — Py(2) — eIm(Viz).
Note that for Im z > 0, the argument of iz lies between 7/2 and 37/2
so that v/iz is a holomorphic function and Im(v/iz) is harmonic and
moreover the argument of v/iz lies between 7/4 and 37 /4.
Thus v tends to zero to —oo as z tends to co. Consider the region from
—R to R along the real axis and a semicircle of radius R to R to —R.
The maximum of v(z) occurs on the boundary. If R is large enough
the maximum is on the real axis and so the maximum is zero.
It follows that
u— Py < elm(Viz) <0.
Letting € go to zero, we get
u S PU-
Replacing u by —u we get the reverse inequality
Iz U S u.

But then v = Py, as required.



