9. THE RIEMANN ZETA FUNCTION II
Recall ,
I'(s) = / ¥ e " du,
0

for o > 1.
If we replace x by nx in the integral then we obtain

n=°T(s) :/ ¥ e da.
0

Now sum over n to get
s—1

g(s)r<s):/0°° A

et —1
Note that as 0 > 1 the integral is absolutely convergent at both ends,

x = 0 and x = oo and so we can switch the order of integration and
summation. Also we define

s—1

x — e(sfl)log:r

unambiguously, in the usual way.

Now we define two paths C' and C),. For C' we come in from positive
infinity just above the real axis, describe most of a small circle centred
at the origin and return to infinity just below the real axis. We don’t
care too much about the exact definition of C' except that the circle
has radius r less than 27. For C,, we start at point of C' describe most
of a square encompassing +£2k7i, 0 < k < n and end at point of C' just
below the z-axis. We then describe the bounded part of C' to complete
a full cycle.

Theorem 9.1. Ifo > 1 then

PERCELY

2mi e —1
where (—2)°~1 is defined on the complement of the positive real x-axis
as
els~ D) log(—2) with —7 < Imlog(—2) <.

Proof. The integral obviously converges. By Cauchy’s theorem the
integral does not depend on C', as long as C' does not go around any
non-zero multiples of 27i. In particular we are free to let the radius of
the circle go to zero.

Consider the integral around the circular part of C'. As r goes to
zero the length of the path is proportional to r. As the denominator
is also proportional to 7 and (—z)*~! goes to zero the integral around

the circular part goes to zero.
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We are left with an integral along the positive real axis described
both ways. On the upper edge

(_Z)s—l _ xs—le—(s—l)m'7
and on the lower edge
(_Z)s—l _ 33'8_16(8_1)7”;.
It follows that
_2)s—1 00 ,.s—1,—(s—1)mi 00 ,.s—1 (s—1)mi
/< 2) dz:_/ Ldﬁ/ e,
c e —1 0 er —1 0 er —1
= 2isin7(s — 1){(s)T'(s).

Now use the fact that

™

O

sinm(s —1) = —sinmws and I's)I'(1 —s) = .
7ls —1) = —sin7 (1= 5) = ——
Corollary 9.2. The (-function can be extended to a meromorphic func-
tion on the whole complex plane whose only pole is a simple pole at
s = 1 with residue 1.

Proof. Consider the RHS of the equation in (9.1). I'(1—s) is meromor-
phic on C and the integral defines an entire function. Since the RHS is
meromorphic on the whole complex plane we can use this equation to
extend ((s) to a meromorphic function on the whole complex plane.

I'(1 — s) has poles at s =1, s = 2, .... But we already know that
((s) is holomorphic for o > 1 so the zeroes of the integral must cancel
with the poles and the only pole is at the origin.

As s =1, I'(1 — s) has a simple pole with residue 1. On the other

hand
1
/ dz = 2mi,
CGZ —1

by the Residue theorem. Thus ((s) has residue one at s = 1. O

We can calculate ((—n) where n € N explicitly. We already know
that

1 1 1 S By
_+ 1t 1)kl 2%—1
1 2 2+21:( AT

We have

n! [zt
((=n)=(-1)"= dz

21 Cez—l '

Thus ¢(—n) is (—1)"n! times the coefficient of 2™ in the expansion

above.
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Thus
(_ 1>mBm
om

The points —2m are called the trivial zeroes of the (-function.
Note that if 0 > 1 we have

C(s)] < ¢(o).
Thus we have good control on the (-function for o > 1. In fact we also
have good control for o < 0:

¢(0)=-1/2 ¢(—2m) =0 and ((—2m+1) =

Theorem 9.3.
TS

((s) = 2°7° 'sin 7F(1 —5)C(1 = s).
Proof. We use the path C,,. We assume that square part is defined by
the lines t = £(2n + 1)7 and 0 = £(2n + 1)7. The cycle C,, — C has
winding number one about the points £2mni with m =1, 2, ..., n.
The poles at these points of

(=)

er —1
are simple with residues
(F2mmi)* L.
Thus
1 (—2)871 - Ns—1 Ns—1
i Jo o o1 dz = mz::I [(—2mmi)*~" + (2mmi)* ']

= > ma @+ (=)

=2 (2mm)* (i — (—i)") /2

& s
=2 2mm)* ! sin —
m§:1( mm)® " sin 5

where we used the fact that i = ¢™/2. We divide C,, into two parts,

C! + C!' where C! is the square bit and C! is the rest. It is easy to
see that |e* — 1| is bounded below on C, by a fixed positive constant,
independent of n, while |(—2)*7!| is bounded by a multiple of n*~1.

The length of C) is of the order of n and so

_2)\s—1
/ (=2 .
ol er —1

n
3

< An?,



for some constant A. If & < 0 then the integral over C! will tend to
zero as n tends to infinity and the same is true for the integral over
C!. Therefore the integral over C,, — C' will tend to the integral over
—C' and so the LHS tends to

¢(s)
r(1—s)

Under the same condition on o the series

§ ms—l

converges to ((1 — s). Thus the RHS is a multiple of ((1 — s).

Taking the limit gives the desired equation. A priori this is only
valid for ¢ < 0 but if two meromorphic functions are equal on an open
set they are equal everywhere. O

One can rewrite the functional equation. For example, replacing s
by 1 — s we have

C(1—s)=2"%1"%cos %SF(S)C(S)

One can also derive this using the functional equation
T

D(s)T(1 — s) =

sinms

We also have

Corollary 9.4. The function

€(5) = 31— s)r 20 (s/2)C(s),
is entire and satisfies £(s) = &(1 — s).

Proof. £(s) is a meromorphic function on C. The pole of ((s) at s = 1
cancels with 1 — s and the poles of T'(s/2) cancel with the trivial zeroes
of ¢(s). Thus &(s) is an entire function.

Note that from the functional equation

™

T(s)T(1 — s) =

sin s

we get
s

I((1 = 5)/2)0((1 +5)/2) =
Recall also Legendre’s duplication formula

VL (22) = 227'T(2) (2 + 1/2).
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(1~ 5) = 51— s)sm PI((1 = 5)/2)¢(1 - 5)
= %s(l — §)m V2D ((1 — 5)/2)28 7% cos %SF(S)C(S)

= %s(l — §)m2¢ ()2 Y20 (5)T((1 — 5)/2) cos s

2
= %3(1 — 5)m ()T ()2 (1 4 5)/2)
= %s(l — 5)C(s)m*T(s/2)
= &(s). O

We know from the series development of ((s) that there are no zeroes
in the region o > 1. Using the functional equation it follows that ((s)
has no zeroes in the region ¢ < 0 apart from the trivial zeroes. So all of
the zeroes belong to the strip 0 < ¢ < 1. The Riemann hypothesis
states that the only zeroes in the strip 0 < o < 1 belong to the line
o=1/2.

It is known that there are no zeroes on the lines ¢ = 0 and ¢ = 1.

It also known that at least one third of the zeroes lines on the line
o=1/2.
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