8. STIRLING FORMULA

Stirling’s Formula is a classical formula to compute n! accurately
when n is large.

We will derive a version of Stirling’s formula using complex analysis
and residues. Recall the formula for the second logarithmic derivative
of the gamma function:
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Let’s start with the partial sum
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We'd like to compute this as an integral. To this end, we’d like a
function with residues
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w = u + v is the variable of integration. For the time being we keep
z = x + iy fixed and we assume that x > 0.

We integrate around the rectangle whose vertical sides are u = 0 and
u =n+ 1/2 and whose horizontal sides are v = £Y". Call this contour
K. Note that this contour contains a pole of ®(w), at w = 0, so that
we need to take the principal value:
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We will first let Y go to infinity and then n. Note that cot 7w
tends uniformly to +i as v goes to oo. Since 1/(z + w)? goes to zero
the integral over the horizontal sides goes to zero. Over the infinite
vertical line u = n 4+ 1/2, cot mw is bounded, and by periodicity this
bound is independent of n. The integral over the line u = n + 1/2 is
therefore at most a constant multiple of
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Note that on the line u = n + 1/2 we have
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and so
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We can calculate the last integral using residues. The poles are at
w=—zand w =2n+1+Zz. Only the first 2 = —w is to the left of the

line u = n + 1/2. The residue at w = —z is
1
2n +1+ 2z
The integral is therefore
2m
2n + 1+ 2z

This goes to zero as n goes to infinity.
It remains to deal with the principal value of the integral over the
imaginary axis.
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Putting all of this together we get
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We use the expression
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Now the integral from the first term is
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where the integral is strongly very convergent.
If we restrict z to the right half plane we can integrate this formula.
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where log z is the principal branch and C' is a constant.

Note that if we restrict z to a compact subset of the right half plane
then the integral converges uniformly and so we are allowed to differ-
entiate under the integral sign.
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Thus
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We want to integrate once more. If we did this directly we would
get tan(z/v) which is multi-valued. Instead we integrate by parts first,
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Now we integrate with respect to z again to get
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Here C” is a new constant of integration and C' — 1 has been replaced
by C. This formula means that logT'(z) is single-valued on the right
half plane and given by the expression on the right. We choose C’ so
that the LHS is real on the real axis.
To determine the constants C' and C’ we need to consider the integral
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We first check that J(z) tends to zero as z goes to infinity but stays

away from the imaginary axis. Suppose that we restrict z to the half
plane x > ¢ > 0. We break the integral into two parts
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J(z):/2+/ = Jy+ Ja.

In the first integral
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In the second integral
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and so

Since the integral of log 1_@% is convergent J; and J5 tend to zero as
z goes to infinity.

To determine C' we use the functional equation I'(z + 1) = 2I'(z) or
log'(z + 1) = log z + log I'(2), which is valid provided we stay in the
right half plane. Hence

1 1
C’+C’z+0+(z+§) log(z+1)+J(2+1) = C’+Cz+(z—|—§) log z+J(2)
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and so . .
C= <z+§> log (1—1—;) +J(z) = J(z+1).
Letting z go to infinity we get
C=-1

Using the other functional equation I'(2)I'(1—2) =
(with some work!) that C" = $log27. Thus
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we can deduce

1
logI'(z) = §log27r— 24+ (z—1/2)1ogz + J(z).

Equivalently

[(2) = V2rz7" 1272 2),
This is Stirling’s formula. As J(z) approaches 0 as z approaches
infinity we can use Stirling’s formula to estimate n! for large values of
n.

Theorem 8.1.
['(z) = /ooe_ttz_l dt
for any x > 0. '
Proof. Let
F(z) = /OoettZI dt.
0

Note that, integrating by parts,
F(z+1) = / e 't dt = z/ e 't dt = 2F(2).
0 0

It follows that F'(z) is in fact an entire function and that
F(z+1) F(2)

I'(z+1) T(2)’
so that the ratio is periodic with period one.
The goal is to apply Liouville’s theorem to the ratio. The key point

is to bound the absolute value of the ratio |F/T’| on some strip, say on
1 <z <2. For a start

|F(z)| < / e "1 dt = F(x),
0

so that F'(z) is bounded in the strip. Now we apply Stirling’s formula
to find a lower bound for |I'(2)]:

1
log |I'(2)| = §log27r —z+ (z—1/2)log|z| —yargz + Re J(2).
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The only term that bothers us is —y arg z which can go to negative in-
finity, comparable to —n|y|/2. Thus |F/T'| grows no faster than e¥//2,
Note that /T is a function of the variable ¢ = ¢*™#. It has singu-
larities at ¢ = 0 and ¢ = oo but |F/I'| grows at most like |¢|~'/? as ¢
approaches zero and |q|1/ 2 as ¢ approaches infinity. Thus the singular-
ities there are removable and F'/T" is constant by Liouville.
Since F(1) =T'(1) = 1 it follows that F(z) = I'(2). O
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