
8. Stirling Formula

Stirling’s Formula is a classical formula to compute n! accurately
when n is large.

We will derive a version of Stirling’s formula using complex analysis
and residues. Recall the formula for the second logarithmic derivative
of the gamma function:
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Let’s start with the partial sum
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We’d like to compute this as an integral. To this end, we’d like a
function with residues
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at the integral points ν. We pick

Φ(w) =
π cotπw

(z + w)2
.

w = u + iv is the variable of integration. For the time being we keep
z = x+ iy fixed and we assume that x > 0.

We integrate around the rectangle whose vertical sides are u = 0 and
u = n+ 1/2 and whose horizontal sides are v = ±Y . Call this contour
K. Note that this contour contains a pole of Φ(w), at w = 0, so that
we need to take the principal value:
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We will first let Y go to infinity and then n. Note that cot πw
tends uniformly to ±i as v goes to ∞. Since 1/(z + w)2 goes to zero
the integral over the horizontal sides goes to zero. Over the infinite
vertical line u = n + 1/2, cot πw is bounded, and by periodicity this
bound is independent of n. The integral over the line u = n + 1/2 is
therefore at most a constant multiple of∫

u=n+1/2

dw

|w + z|2
.

Note that on the line u = n+ 1/2 we have

w̄ = 2n+ 1− w
1



and so
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.

We can calculate the last integral using residues. The poles are at
w = −z and w = 2n+ 1 + z̄. Only the first z = −w is to the left of the
line u = n+ 1/2. The residue at w = −z is

1

2n+ 1 + 2x
.

The integral is therefore

2π

2n+ 1 + 2x
.

This goes to zero as n goes to infinity.
It remains to deal with the principal value of the integral over the

imaginary axis.
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Putting all of this together we get
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We use the expression
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Now the integral from the first term is∫ ∞
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where the integral is strongly very convergent.
If we restrict z to the right half plane we can integrate this formula.
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where log z is the principal branch and C is a constant.
Note that if we restrict z to a compact subset of the right half plane

then the integral converges uniformly and so we are allowed to differ-
entiate under the integral sign.
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We want to integrate once more. If we did this directly we would
get tan(z/v) which is multi-valued. Instead we integrate by parts first,∫ ∞

0

2v

(v2 + z2)
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=
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(v2 + z2)2
log(1− e−2πv) dv.

Now we integrate with respect to z again to get

log Γ(z) = C ′ + Cz + (z − 1

2
) log z +

1

π

∫ ∞
0

z

(v2 + z2)2
log

1

1− e−2πv
dv.

Here C ′ is a new constant of integration and C − 1 has been replaced
by C. This formula means that log Γ(z) is single-valued on the right
half plane and given by the expression on the right. We choose C ′ so
that the LHS is real on the real axis.

To determine the constants C and C ′ we need to consider the integral

1

π

∫ ∞
0

z

(v2 + z2)2
log

1

1− e−2πv
dv.

We first check that J(z) tends to zero as z goes to infinity but stays
away from the imaginary axis. Suppose that we restrict z to the half
plane x ≥ c > 0. We break the integral into two parts

J(z) =

∫ |z|
2

0

+

∫ ∞
|z|
2

= J1 + J2.

In the first integral

|v2 + z2| ≥ |z|2 − |z/2|2 =
3|z|2

4
and so

|J1| ≤
4

3π|z|

∫ ∞
0

log
1

1− e−2πv
dv.

In the second integral

|v2 + z2| = |z − iv||z + iv| > c|z|
and so

|J2| <
1

πc

∫ ∞
|z|/2

log
1

1− e−2πv
dv.

Since the integral of log 1
1−e−2πv is convergent J1 and J2 tend to zero as

z goes to infinity.
To determine C we use the functional equation Γ(z + 1) = zΓ(z) or

log Γ(z + 1) = log z + log Γ(z), which is valid provided we stay in the
right half plane. Hence

C ′+Cz+C+(z+
1

2
) log(z+1)+J(z+1) = C ′+Cz+(z+

1

2
) log z+J(z)
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and so

C =

(
z +

1

2

)
log

(
1 +

1

z

)
+ J(z)− J(z + 1).

Letting z go to infinity we get

C = −1.

Using the other functional equation Γ(z)Γ(1−z) = π
sinπz

we can deduce

(with some work!) that C ′ = 1
2

log 2π. Thus

log Γ(z) =
1

2
log 2π − z + (z − 1/2) log z + J(z).

Equivalently

Γ(z) =
√

2πzz−1/2e−zeJ(z).

This is Stirling’s formula. As J(z) approaches 0 as z approaches
infinity we can use Stirling’s formula to estimate n! for large values of
n.

Theorem 8.1.

Γ(z) =

∫ ∞
0

e−ttz−1 dt

for any x > 0.

Proof. Let

F (z) =

∫ ∞
0

e−ttz−1 dt.

Note that, integrating by parts,

F (z + 1) =

∫ ∞
0

e−ttz dt = z

∫ ∞
0

e−ttz−1 dt = zF (z).

It follows that F (z) is in fact an entire function and that

F (z + 1)

Γ(z + 1)
=
F (z)

Γ(z)
,

so that the ratio is periodic with period one.
The goal is to apply Liouville’s theorem to the ratio. The key point

is to bound the absolute value of the ratio |F/Γ| on some strip, say on
1 ≤ x ≤ 2. For a start

|F (z)| ≤
∫ ∞
0

e−ttx−1 dt = F (x),

so that F (z) is bounded in the strip. Now we apply Stirling’s formula
to find a lower bound for |Γ(z)|:

log |Γ(z)| = 1

2
log 2π − x+ (x− 1/2) log |z| − y arg z + Re J(z).
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The only term that bothers us is −y arg z which can go to negative in-
finity, comparable to −π|y|/2. Thus |F/Γ| grows no faster than eπ|y|/2.

Note that F/Γ is a function of the variable q = e2πiz. It has singu-
larities at q = 0 and q = ∞ but |F/Γ| grows at most like |q|−1/2 as q
approaches zero and |q|1/2 as q approaches infinity. Thus the singular-
ities there are removable and F/Γ is constant by Liouville.

Since F (1) = Γ(1) = 1 it follows that F (z) = Γ(z). �
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