5. JENSEN FORMULA

Theorem 5.1 (Jensen’s Formula). Let f(2) be a holomorphic function
for|z| < p.
Then
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where ay,as, . ..,a, are the non-zero zeroes, repeated according to mul-
tiplicity, of f in the open disc |z| < p and

flz)=c"+ ...
is the power series expansion for f(z).

Proof. We first prove this result under the hypotheses that f(z) is
nowhere zero in the closed disc |z| < p. Under these assumptions
log | f(2)| is a harmonic function and the LHS is just log|f(0)].

Thus
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Now suppose that f(z) has zeroes on the circle |z| = p. We check
that the same formula holds. If we replace f(z) by
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z — petfo
then g(z) is a holomorphic function with one fewer zero than f(z). By
induction on the number of zeroes on the circle
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log |£(0)] = — / log |£(pe™®)] do.

Now
log | f(0)| = log |g(0)| — log p,
and
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It suffices then to show that
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Equivalently we want
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By symmetry this integral does not depend on 6. So we just have to

show that .
/ log |1 — €| dd = 0.
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But we actually showed this when we computed the value of

/ log sin x dx
0
using contour integration.
Now suppose that f(z) has zeroes ay,as, ..., a, (repeated according
to multiplicity) but f(z) is non-zero at the origin. Let
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Then F(z) doesn’t vanish anywhere in the disc |z| < p and |F(z)| =
|f(2)|. Thus
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It follows that
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Finally we need to consider the general case when f(z) is possibly
zero at the origin. Let

h
9(2) = f(2) (g) =cp+....
Then ¢(z) doesn’t vanish at the origin |g(z)| = |f(z)| on the circle
|z| = p and
log |g(0)| = log |c| + hlog p. O

Corollary 5.2 (Poisson-Jensen formula). Let f(z) be a holomorphic
function for |z| < p such that f(z) # 0.

Then
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where ay,as, . ..,a, are the non-zero zeroes, repeated according to mul-

tiplicity, of f in the open disc |z| < p.
Proof. Apply Jensen’s formula to the function F(z) appearing in the

proof of (5.1)). O
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