
2. The Gamma function

The zeroes of the function sinπz are the integers and it is the simplest
function with this property. How about holomorphic functions whose
zeroes are the positive (or negative) integers? The simplest choice of
such a function is given by the canonical product:

G(z) =
∞∏
n=1

(
1 +

z

n

)
e−z/n.

Obviously G(z) is zero at all of the negative integers. As usual we
throw in the exponential term to induce convergence.

On the other hand G(−z) has zeroes at all of the positive integers.
It follows that the ratio between the product zG(z)G(−z) and sinπz
is a function with no zeroes nor poles, so that it is the exponential of
a function. In fact we showed in 220A, Lecture 24 that

sin πz = πz
∏
n6=0

(
1− z

n

)
ez/n.

Thus

zG(z)G(−z) =
sin πz

π
.

Since the construction of G(z) is so simple, we expect it to have some
interesting properties. Note that G(z− 1) has the same zeroes as G(z)
as well as a zero at 0. So we can write

G(z − 1) = zeγ(z)G(z),

for some entire function γ(z). To determine γ(z) take the logarithmic
derivative of both sides:

∞∑
n=1

(
1

z − 1 + n
− 1

n

)
=

1

z
+ γ′(z) +

∞∑
n=1

(
1

z + n
− 1

n

)
.

Let’s take the LHS and replace n by n+ 1:

∞∑
n=1

(
1

z − 1 + n
− 1

n

)
=

1

z
− 1 +

∞∑
n=1

(
1

z + n
− 1

n+ 1

)

=
1

z
− 1 +

∞∑
n=1

(
1

z + n
− 1

n

)
+

(
1

n
− 1

n+ 1

)
.

The last series sums to 1 and so γ′(z) = 0. It follows that γ(z) is a
constant. Let’s denote this constant by γ, so that

G(z − 1) = zeγG(z).
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To determine the constant γ, plug in z = 1:

1 = G(0) = eγG(1).

Therefore

e−γ =
∞∏
n=1

(
1 +

1

n

)
e−1/n.

Now the nth partial product is

(n+ 1)e−(1+1/2+1/3+···+1/n),

and so

γ = lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
.

The constant γ is called Euler’s constant.

γ ≈ .57722.

If we set H(z) = G(z)eγz then

H(z − 1) = zH(z).

Thus

Γ(z) =
1

zH(z)
satisfies

Γ(z − 1) =
Γ(z)

z − 1
,

or better
Γ(z + 1) = zΓ(z).

Γ is called Euler’s gamma function.
We have

Γ(z) =
e−γz

z

∞∏
n=1

(
1 +

z

n

)−1
ez/n.

Note that
Γ(z)Γ(1− z) =

π

sin πz
.

Γ(z) is a meromorphic function with poles at z = 0, −1, −2, . . . , and
no zeroes.

Note that Γ(1) = 1, Γ(2) = 1Γ(1) = 1, Γ(3) = 2Γ(2) = 2, Γ(4) =
3Γ(2) = 6 and in general Γ(n) = (n− 1)!. We can also see that

Γ(1/2) =
√
π.

To go further, it is useful to write down the second logarithmic de-
rivative:

d

dz

(
Γ′(z)

Γ(z)

)
=
∞∑
n=0

1

(z + n)2
.
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For example

Γ(z)Γ(z + 1/2) and Γ(2z)

have the same poles. We have

d

dz

(
Γ′(z)

Γ(z)

)
+

d

dz

(
Γ′(z + 1/2)

Γ(z + 1/2)

)
=
∞∑
n=0

1

(z + n)2
+
∞∑
n=0

1

(z + n+ 1/2)2

= 4

[
∞∑
n=0

1

(2z + 2n)2
+
∞∑
n=0

1

(2z + 2n+ 1)2

]

= 4
∞∑
m=0

1

(2z +m)2

= 2
d

dz

(
Γ′(2z)

Γ(2z)

)
.

If we integrate then we get

Γ(z)Γ(z + 1/2) = eaz+bΓ(2z),

where a and b are constants to be determined. Substituting z = 1/2
and z = 1 we make use of the known values

Γ(1/2) =
√
π, Γ(1) = 1, Γ(3/2) =

1

2

√
π, and Γ(2) = 1.

This gives

a/2 + b = 1/2 log π

a+ b = 1/2 log π − log 2.

It follows that

a = −2 log 2 and b = 1/2 log π + log 2.

Putting all of this together we get
√
πΓ(2z) = 22z−1Γ(z)Γ(z + 1/2).

This is known as Legendre’s (duplication) formula.
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