15. THE DIRICHLET PROBLEM: PERRONS METHOD

Let U be a bounded region and let f: I' — R be a continuous
function defined on the boundary I' of U. The Dirichlet problem is to
determine a harmonic function v which is equal to f on the boundary.

To describe Perron’s method it is not even necessary to assume that
f(€) is continuous; for simplicity we will however assume that there is
a constant M such that |f({)| < M (for clarity we will use the variable
(¢ to denote values on the boundary I').

To each such function f, Perron’s method associates a harmonic
function u on U; whenever f is continuous and U satisfies some rea-
sonable conditions then u will extend to a continuous function on the
closure of U which agrees with f on I'.

Definition 15.1. The Perron family associated to f is
P(f) ={v: U — R|wv is subharmonic and limsupv(z) < f({) },

z—(

where ¢ ranges over the whole of T'.

Here the use of limsup means precisely that given any point ( € T’
and any € > 0 there is a disk A of radius ¢ about ( such that if z € ANU
then

v(2) < f(Q) +e
Definition 15.2. The Perron function u associated to f is the func-
tion
u(z) = sup{o(z)|v e P(f) }.

Lemma 15.3. The Perron function u associated to f is harmonic.

Proof. We first prove that for any function v € P(f), we have v <
M. Even though this follows from the maximum principle in a fairly
straightforward fashion, we will go through the proof of this in detail,
since it is quite important.

Given € > 0, let

E=E ={ze€U|v(z) >M+e¢€}.
The points in C — E are of three kinds
(1) points in the exterior of U,
(2) points on I' and
(3) points in U with v(z) < M +e.
For points of type (1) we may find a small disk containing the point

completely contained in the exterior of U. In case (2) we may find a

neighbourhood A of the point such that v(z) < M +e€for z € ANU. In
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case (3) by continuity there is a neighbourhood in U such v(z) < M +e.
It follows that the complement of F is open, so that E itself is closed.
Moreover as U is bounded, F is compact. Suppose that E is non-
empty. Thus v achieves its maximum on £ and so v is constant and
greater than M + €, which contradicts the fact that v € P(f). Thus E
is empty and v < M on U.

Let A be a disk whose closure is contained in U. Let zp € A. Then
we may find a sequence of functions vy, ve,... € P(f) such that

u(zp) = nh_)rrolo vn(20)-

Let
V,, = max(vq, v, ..., Up).

Then the functions V,, are a non-decreasing sequence of functions in
P(f), since the maximum of a finite set of subharmonic functions is
subharmonic, and the correct behaviour at the boundary is clear. Let
V! be the subharmonic function which is equal to V,, outside A and
which is harmonic inside A. Then V! € P(f) and the sequence of func-
tions V! is also non-decreasing. Moreover the sequence of inequalities

vn(20) < Va(20) <V, (20) < ul20),

shows that
lim V! (z0) = u(z).
n—o0o
By Harnack’s principle, the sequence of functions V{, VJ, ... converges

to a harmonic function U on A, for which U < u and U(z) = u(2).
Now pick another point z; € A. We go through the same construc-
tion as before. Pick wy,wy, ... € P(f) so that

u(z) = Jgr{:own(zl)

But now we put in an added twist and replace w, by max(v,,w,).
Repeating the construction we obtain a harmonic function U < Uy < u
on A such that Uy (z1) = u(z1). Now the harmonic function U—U; has a
maximum at zg, namely zero. But then U = U so that U(z1) = u(z).
As z; is arbitrary, u = U on A and so u is harmonic in A. But then u
is harmonic everywhere, since A is arbitrary. 0

Now we investigate the circumstances under which « is a solution of
the Dirichlet problem. First note that the Dirichlet problem does not
always have a solution. For example let U be the punctured unit disk
0 < |z| < 1 and let f be the function which is zero on the boundary
and 1 at the origin. A harmonic function with these boundary values
would be bounded. In particular it would have a removable singularity

at the origin. But then the maximum principle would imply that the
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function is identically zero. In particular it would not have the correct
behaviour at the origin.

On the other hand, suppose that U is a solution. Then U € P(f).
Hence U < u. The opposite inequality v < U follows by the maximum
principle. Thus a solution to the Dirichlet problem, if it exists at all,
must equal w.

In fact a solution to the Dirichlet problem always exists if U is not
“too thin” at any boundary point. We can measure this in a fashion
which at first seems to have nothing to do with this notion.

Lemma 15.4. Suppose that w is a harmonic function on U which
extends to a continuous function on the boundary where it is strictly
positive except at one point (y, where it is zero (any such function is
called a barrier).

If f is continuous at (y then

lim u(z) = £(Go)-

z—Co
Proof. Tt surely suffices to prove that for every € > 0
limsupu(z) < f({y) + € and lim icnfu(z) > f((o) — e
z—Co

Z*)C()

Pick a neighbourhood A of (, such that
1£(C) = f(G)] <€

for every ¢ € A. On U — U N A the function w has a positive minimum
wp. Consider the boundary values of the harmonic function

(M = f(Co))-

w(2)

W(z) = f(G) + e+

Wo
For ( € A we have

W(¢) = f(G) +€> f(C),
and for ¢ outside A we have
W(C) =2 M+e> f(Q).
By the maximum principle any function v € P(f) must satisfy
v(z) < W(z2).
In particular
But then
limsupu(z) < W(G) = f(Co) + e

Z*)CO
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To prove the other inequality it suffices to prove that the harmonic

function
V() = 16— “Diar - (@),

0
is an element of P(f). For ( € A we have

V(€) < f(Go) —e < f(Q),

and for any other boundary point,
V() < =M —e< f(Q)
Thus V € P(f) and so V(z) < U(z). But then
liminfu(z) > V() = f({) — ¢,

z—)C()

which is the other inequality. 0

Clearly this gives a sufficient way to prove that the Dirichlet problem
has a solution; show that there is a barrier at every point. It remains
to come up with a nice criteria for the existence of a barrier.

To warm up, suppose that a point (; € U UT has a supporting
hyperplane. That is to say that every point of U UT" is on one side of a
half-plane except the point (y, which lies on the boundary line. If the
direction of the line is given by «, with the half-plane to the left, then

w(z) = Im(e™™(z — &),
is a barrier at (j.
More generally suppose that (y is the endpoint of a line segment,

whose other points are exterior to U. Let (; be the other endpoint.
Pick a holomorphic branch of the function

z—Co
Z—Q'

For an appropriate choice of angle « it follows that

I —ia [F T CO

m |e ,
z=G

is a barrier at (.

Although this is not the best result possible, it is certainly quite
strong:

Theorem 15.5. The Dirichlet problem can be solved for any region U
such that each boundary point is the end point of a line segment whose
other points are exterior to U.
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