
15. The Dirichlet Problem: Perrons method

Let U be a bounded region and let f : Γ −→ R be a continuous
function defined on the boundary Γ of U . The Dirichlet problem is to
determine a harmonic function u which is equal to f on the boundary.

To describe Perron’s method it is not even necessary to assume that
f(ζ) is continuous; for simplicity we will however assume that there is
a constant M such that |f(ζ)| ≤M (for clarity we will use the variable
ζ to denote values on the boundary Γ).

To each such function f , Perron’s method associates a harmonic
function u on U ; whenever f is continuous and U satisfies some rea-
sonable conditions then u will extend to a continuous function on the
closure of U which agrees with f on Γ.

Definition 15.1. The Perron family associated to f is

P(f) = { v : U −→ R | v is subharmonic and lim sup
z→ζ

v(z) ≤ f(ζ) },

where ζ ranges over the whole of Γ.

Here the use of limsup means precisely that given any point ζ ∈ Γ
and any ε > 0 there is a disk ∆ of radius δ about ζ such that if z ∈ ∆∩U
then

v(z) < f(ζ) + ε.

Definition 15.2. The Perron function u associated to f is the func-
tion

u(z) = sup{ v(z) | v ∈ P(f) }.

Lemma 15.3. The Perron function u associated to f is harmonic.

Proof. We first prove that for any function v ∈ P(f), we have v ≤
M . Even though this follows from the maximum principle in a fairly
straightforward fashion, we will go through the proof of this in detail,
since it is quite important.

Given ε > 0, let

E = Eε = { z ∈ U | v(z) ≥M + ε }.
The points in C− E are of three kinds

(1) points in the exterior of U ,
(2) points on Γ and
(3) points in U with v(z) < M + ε.

For points of type (1) we may find a small disk containing the point
completely contained in the exterior of U . In case (2) we may find a
neighbourhood ∆ of the point such that v(z) < M+ε for z ∈ ∆∩U . In

1



case (3) by continuity there is a neighbourhood in U such v(z) < M+ε.
It follows that the complement of E is open, so that E itself is closed.
Moreover as U is bounded, E is compact. Suppose that E is non-
empty. Thus v achieves its maximum on E and so v is constant and
greater than M + ε, which contradicts the fact that v ∈ P(f). Thus E
is empty and v ≤M on U .

Let ∆ be a disk whose closure is contained in U . Let z0 ∈ ∆. Then
we may find a sequence of functions v1, v2, . . . ∈ P(f) such that

u(z0) = lim
n→∞

vn(z0).

Let
Vn = max(v1, v2, . . . , vn).

Then the functions Vn are a non-decreasing sequence of functions in
P(f), since the maximum of a finite set of subharmonic functions is
subharmonic, and the correct behaviour at the boundary is clear. Let
V ′n be the subharmonic function which is equal to Vn outside ∆ and
which is harmonic inside ∆. Then V ′n ∈ P(f) and the sequence of func-
tions V ′n is also non-decreasing. Moreover the sequence of inequalities

vn(z0) ≤ Vn(z0) ≤ V ′n(z0) ≤ u(z0),

shows that
lim
n→∞

V ′n(z0) = u(z0).

By Harnack’s principle, the sequence of functions V ′1 , V
′
2 , . . . converges

to a harmonic function U on ∆, for which U ≤ u and U(z0) = u(z0).
Now pick another point z1 ∈ ∆. We go through the same construc-

tion as before. Pick w1, w2, . . . ∈ P(f) so that

u(z1) = lim
n→∞

wn(z1).

But now we put in an added twist and replace wn by max(vn, wn).
Repeating the construction we obtain a harmonic function U ≤ U1 ≤ u
on ∆ such that U1(z1) = u(z1). Now the harmonic function U−U1 has a
maximum at z0, namely zero. But then U = U1 so that U(z1) = u(z1).
As z1 is arbitrary, u = U on ∆ and so u is harmonic in ∆. But then u
is harmonic everywhere, since ∆ is arbitrary. �

Now we investigate the circumstances under which u is a solution of
the Dirichlet problem. First note that the Dirichlet problem does not
always have a solution. For example let U be the punctured unit disk
0 < |z| < 1 and let f be the function which is zero on the boundary
and 1 at the origin. A harmonic function with these boundary values
would be bounded. In particular it would have a removable singularity
at the origin. But then the maximum principle would imply that the
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function is identically zero. In particular it would not have the correct
behaviour at the origin.

On the other hand, suppose that U is a solution. Then U ∈ P(f).
Hence U ≤ u. The opposite inequality u ≤ U follows by the maximum
principle. Thus a solution to the Dirichlet problem, if it exists at all,
must equal u.

In fact a solution to the Dirichlet problem always exists if U is not
“too thin” at any boundary point. We can measure this in a fashion
which at first seems to have nothing to do with this notion.

Lemma 15.4. Suppose that ω is a harmonic function on U which
extends to a continuous function on the boundary where it is strictly
positive except at one point ζ0, where it is zero (any such function is
called a barrier).
If f is continuous at ζ0 then

lim
z→ζ0

u(z) = f(ζ0).

Proof. It surely suffices to prove that for every ε > 0

lim sup
z→ζ0

u(z) ≤ f(ζ0) + ε and lim inf
z→ζ0

u(z) ≥ f(ζ0)− ε.

Pick a neighbourhood ∆ of ζ0 such that

|f(ζ)− f(ζ0)| < ε,

for every ζ ∈ ∆. On Ū −U ∩∆ the function ω has a positive minimum
ω0. Consider the boundary values of the harmonic function

W (z) = f(ζ0) + ε+
ω(z)

ω0

(M − f(ζ0)).

For ζ ∈ ∆ we have

W (ζ) ≥ f(ζ0) + ε > f(ζ),

and for ζ outside ∆ we have

W (ζ) ≥M + ε > f(ζ).

By the maximum principle any function v ∈ P(f) must satisfy

v(z) < W (z).

In particular

u(z) < W (z).

But then

lim sup
z→ζ0

u(z) ≤ W (ζ0) = f(ζ0) + ε.
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To prove the other inequality it suffices to prove that the harmonic
function

V (z) = f(ζ0)− ε−
ω(z)

ω0

(M − f(ζ0)),

is an element of P(f). For ζ ∈ ∆ we have

V (ζ) ≤ f(ζ0)− ε < f(ζ),

and for any other boundary point,

V (ζ) ≤ −M − ε < f(ζ).

Thus V ∈ P(f) and so V (z) ≤ U(z). But then

lim inf
z→ζ0

u(z) ≥ V (ζ0) = f(ζ0)− ε,

which is the other inequality. �

Clearly this gives a sufficient way to prove that the Dirichlet problem
has a solution; show that there is a barrier at every point. It remains
to come up with a nice criteria for the existence of a barrier.

To warm up, suppose that a point ζ0 ∈ U ∪ Γ has a supporting
hyperplane. That is to say that every point of U ∪Γ is on one side of a
half-plane except the point ζ0, which lies on the boundary line. If the
direction of the line is given by α, with the half-plane to the left, then

ω(z) = Im(e−iα(z − ζ0)),
is a barrier at ζ0.

More generally suppose that ζ0 is the endpoint of a line segment,
whose other points are exterior to U . Let ζ1 be the other endpoint.
Pick a holomorphic branch of the function√

z − ζ0
z − ζ1

.

For an appropriate choice of angle α it follows that

Im

[
e−iα

√
z − ζ0
z − ζ1

]
,

is a barrier at ζ0.
Although this is not the best result possible, it is certainly quite

strong:

Theorem 15.5. The Dirichlet problem can be solved for any region U
such that each boundary point is the end point of a line segment whose
other points are exterior to U .
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