
1. (15pts) State and prove the maximum principle for harmonic func-
tions.

Solution: Let U be a region and let u : U −→ R be a harmonic function.
If u achieves its maximum on U then u is constant.
Let z0 ∈ U be a point where u achieves its maximum. Since u is
harmonic we have

u(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ) dθ,

for any r ≥ 0 such that the closed ball |z−z0| ≤ r is contained in U . As
u is continuous and the average value of u(z) on the circle |z − z0| = r
is u(z0) we must have u(z) = u(z0 on the circle |z − z0| = r.
Varying the radius r of the circle we must have that u(z) is constant
on the whole closed ball |z − z0| ≤ r. Varying z0 we must have that
u(z) is constant.
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2. (15pts) Show that

1

ζ(s)
=
∞∏
n=1

(1− p−sn ).

where σ = Re s > 1 and p1, p2, . . . are the primes in increasing order.

Solution: We first check absolute convergence of the product. This is
equivalent to absolute convergence of the sum

∞∑
n=1

|p−sn | =
∞∑
n=1

p−σn .

If we compare this with
∞∑
n=1

n−σ

we see that have absolute convergence for any σ > σ0 > 1.
By definition of the Riemann zeta function we have

ζ(s) =
∞∑
n=1

n−s

for σ = Re s > 1. It follows that

ζ(s)(1− 2−s) =
∞∑
n=1

n−s −
∞∑
n=1

(2n)−s =
∑
m

m−s,

where m runs over the odd integers.
Similarly, by inclusion-exclusion,

ζ(s)(1−2−s)(1−3−s) =
∞∑
n=1

n−s− (2n)−s− (3n)−s+ (6n)−s =
∑
m

m−s,

where m runs over the integers coprime to 2 and 3. More generally

ζ(s)(1− 2−s)(1− 3−s) . . . (1− p−sN ) =
∑
m

m−s = 1− p−sN+1(1 + . . . ),

where m runs over the integers coprime to the first N primes. Since
the dots are the tails of a convergent sequence, letting N go infinity,
we get

ζ(s)
∞∏
n=1

(1− p−sn ) = 1.
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3. (10pts) Let U be a region. Exhibit a family of compact subsets
which exhausts U .

Solution: Let

En = { z ∈ U | |z| ≤ n and |z − z0| ≥ 1/n for every z0 /∈ U }.
Then En ⊂ En+1 and En is bounded. Fix z0 /∈ U . Then

F = { z ∈ U | |z − z0| ≥ 1/n },
is a closed subset. As the intersection of closed sets is closed, it follows
that En is closed. But then En is compact as it is closed and bounded.
Suppose that z ∈ U . Pick m such that |z| < m. Let Z = C−U . Then
Z is a closed subset and

Z ′ = { z ∈ Z | |z| < m+ 1 }
is closed and bounded, so that Z is compact. Suppose that Z ′ is non-
empty. Then the infimum of the distance from Z ′ to z is achieved by
δ > 0. Any other point of Z has distance at least one from z0. Pick
n > m and 1/n < delta. Then z ∈ En so that⋃

n∈N

En = U.

Thus E1, E2, . . . exhaust U .
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4. (15pts) Prove that a family F of locally bounded holomorphic func-
tions on a region U is equicontinuous on any compact subset E.

Solution:
Let z0 ∈ E. By assumption we may find r > 0 and M > 0 such that if
|z− z0| < r then z ∈ U and |f(z)| ≤M . Pick two points z and z′ such
that |z − z0| < r and |z′ − z0| < r. By Cauchy’s integral formula

f(z)− f(z′) =
1

2πi

∫
|w−z0|=r

f(w)

w − z
dw − 1

2πi

∫
|w−z0|=r

f(w)

w − z′
dw

=
1

2πi

∫
|w−z0|=r

f(w)(z − z′)
(w − z)(w − z′)

dw

=
z − z′

2πi

∫
|w−z0|=r

f(w)

(w − z)(w − z′)
dw.

If we suppose that |z − z0| < r/2 and |z′ − z0| < r/2 then we get

|f(z)− f(z′)| ≤ r

2π

∣∣∣∣∫
|w−z0|=r

f(w)

(w − z)(w − z′)
dw

∣∣∣∣ ≤ 4M,

as |w − z| > r/2 and |w − z′| > r/2.
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5. (20pts) (i) Let U 6= C be a simply connected region and let z0 ∈ U .
Construct an injective holomorphic function f : U −→ ∆ such that
f(z0) = 0 and f ′(z0) > 0, where ∆ is the unit disc.

Solution:
Pick a /∈ U . As U is simply connected we can construct a holomorphic
branch of the square root α(z) =

√
z − a. Let w ∈ C. If w belongs

to the image of h then −w does not. It follows that the image of α is
contained in a half plane, Im eiφw ≥ 0. Let β(w) = e−iφw. Then the
image of the composition β ◦ α is contained in the upper half plane.
Let w0 = β ◦ α(z0). Let

γ(z) =
z − w0

z − w̄0

.

Then γ is a Möbius transformation which sends the real axis to the
unit circle and w0 to 0. It follows that γ ◦ β ◦ α sends the upper half
plane to the unit circle and sends z0 to 0. α, β and γ are all injective
so that the composition is injective and the derivative is nowhere zero.
Suppose that the derivative of the composition at the origin is reiθ. Let

δ(z)e−iθz.

Then δ maps the unit disc to the unit disc, fixes the origin so that the
composition f = δ ◦ γ ◦ β ◦ α is injective, sends U to the unit disc,
f(z0) = 0 and f ′(z0) > 0.
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(ii) If the function f is not surjective then exhibit an injective holo-
morphic function g : U −→ ∆ such that g(z0) = 0 and g′(z0) > f ′(z0).

Solution:
Pick a ∈ ∆ not belonging to the image of f(z). As U is simply con-
nected, we may find a holomorphic branch for

F (z) =

√
f(z)− a
1− āf(z)

.

Note that F is the composition of f , the automorphism of the unit disc

z −→ z − a
1− āz

,

and the square root. Thus F is injective and |F (z)| < 1.
Let

G(z) =
|F ′(z0)|
F ′(z0)

F (z)− F (z0)

1− F (z0)F (z)
.

Note that G is the composition of F and the automorphism of the unit
disc

z −→ z − F (z0)

1− F (z0)z
.

Thus G is injective and |G(z)| < 1. Clearly G(z0) = 0. Moreover
G′(z0) > 0. In fact

G′(z0) =
|F ′(z0)|

1− |F (z0)|2
=

1 + |a|
2
√
|a|
f ′(z0) > f ′(z0).
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6. (20pts) (i) Let v1 and v2 be two subharmonic functions on a region
U . Show that max(v1, v2) is subharmonic.

Solution: The maximum v of two continuous functions is continuous.
Let u be a harmonic function. Suppose that v − u has a maximum at
z0. We want to show that v−u is constant. vi−u is subharmonic and
so we may assume that u = 0. Suppose that v(z0) = v1(z0). If z ∈ U
then

v1(z) ≤ v(z) ≤ v(z0) = v1(z0).

Thus z0 is a maximum of v1(z) and so v1(z) is constant. If v(z) 6= v1(z)
in a neighbourhood of z0 then we must have v(z) = v(z0) by continuity.
But then v2(z) is constant and so v is constant.
(ii) Show that Dirichlet’s problem does not always have a solution.

Solution: Let U = ∆∗ be the punctured unit disc and let f(ζ) be
equal to zero on the unit circle and 1 at the origin. Then U is a
bounded region and f is a continuous function on the boundary. Let
u be a harmonic function such that lim supz→ζ u(z) = f(ζ). Then u
is bounded in a neighbourhood of the origin so that u extends to a
harmonic function on the whole unit disc.
Since the values of the extended harmonic function are zero on the
boundary of the disc it follows that u ≤ 0 by the maximum principle.
But then lim supz→0 u(z) ≤ 0 < 1 = f(0). Then u is bounded in a
neighbourhood of the
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7. (10pts) Let f1, f2, . . . be the iterates of the function sin z, so that
f1(z) = sin z and fn+1(z) = fn(sin z). Show that f1, f2, . . . is not locally
bounded at the origin.

Solution: Let
g(z) = sin(iz) = f1(iz).

Then g(z) = i sinh(z). Thus

g2(z) = f2(iz) = sin((i sinh(z)) = sinh(sinh(z)).

Continuing in this way we see that if

gn(z) = fn(iz) then gn+1(z) = gn(sinh(z)).

Let h(x) = sinh(x)− x. Then

h′(x) = cosh(x)− 1 ≥ 0,

with equality if and only if x = 0. It follows that

sinh(x) ≥ x,

with equality if and only if x = 0. Pick any x0 > 0. It follows that the
sequence of numbers

xn = gn(x0) ≥ (1 + δ)nx0,

for some fixed δ, depending on x0. Thus fn(z) is not locally bounded.
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Bonus Challenge Problems
8. (10pts) State and prove Ascoli-Arzola.
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9. (10pts) Let U be a bounded region and let f : Γ −→ R be a function
on the boundary which is bounded, |f(ζ)| ≤M .
Show that the Perron function u associated to the Perron family P(f)
is harmonic.
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