1. (15pts) State and prove the maximum principle for harmonic functions.

Solution: Let U be a region and let $u: U \longrightarrow \mathbb{R}$ be a harmonic function. If u achieves its maximum on U then u is constant.

Let $z_0 \in U$ be a point where u achieves its maximum. Since u is harmonic we have

$$
u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta,
$$

for any $r \geq 0$ such that the closed ball $|z-z_0| \leq r$ is contained in U. As u is continuous and the average value of $u(z)$ on the circle $|z - z_0| = r$ is $u(z_0)$ we must have $u(z) = u(z_0)$ on the circle $|z - z_0| = r$.

Varying the radius r of the circle we must have that $u(z)$ is constant on the whole closed ball $|z - z_0| \leq r$. Varying z_0 we must have that $u(z)$ is constant.

2. (15pts) Show that

$$
\frac{1}{\zeta(s)} = \prod_{n=1}^{\infty} (1 - p_n^{-s}).
$$

where $\sigma = \text{Re } s > 1$ and p_1, p_2, \ldots are the primes in increasing order.

Solution: We first check absolute convergence of the product. This is equivalent to absolute convergence of the sum

$$
\sum_{n=1}^{\infty} |p_n^{-s}| = \sum_{n=1}^{\infty} p_n^{-\sigma}.
$$

If we compare this with

$$
\sum_{n=1}^{\infty} n^{-\sigma}
$$

we see that have absolute convergence for any $\sigma > \sigma_0 > 1$. By definition of the Riemann zeta function we have

$$
\zeta(s) = \sum_{n=1}^{\infty} n^{-s}
$$

for $\sigma = \text{Re } s > 1$. It follows that

$$
\zeta(s)(1 - 2^{-s}) = \sum_{n=1}^{\infty} n^{-s} - \sum_{n=1}^{\infty} (2n)^{-s} = \sum_{m} m^{-s},
$$

where *m* runs over the odd integers. Similarly, by inclusion-exclusion,

$$
\zeta(s)(1-2^{-s})(1-3^{-s}) = \sum_{n=1}^{\infty} n^{-s} - (2n)^{-s} - (3n)^{-s} + (6n)^{-s} = \sum_{m} m^{-s},
$$

where m runs over the integers coprime to 2 and 3. More generally

$$
\zeta(s)(1-2^{-s})(1-3^{-s})\dots(1-p_N^{-s})=\sum_m m^{-s}=1-p_{N+1}^{-s}(1+\dots),
$$

where m runs over the integers coprime to the first N primes. Since the dots are the tails of a convergent sequence, letting N go infinity, we get \sim

$$
\zeta(s) \prod_{n=1}^{\infty} (1 - p_n^{-s}) = 1.
$$

3. (10pts) Let U be a region. Exhibit a family of compact subsets which exhausts U .

Solution: Let

 $E_n = \{ z \in U \mid |z| \le n \text{ and } |z - z_0| \ge 1/n \text{ for every } z_0 \notin U \}.$ Then $E_n \subset E_{n+1}$ and E_n is bounded. Fix $z_0 \notin U$. Then

$$
F = \{ z \in U \, | \, |z - z_0| \ge 1/n \},
$$

is a closed subset. As the intersection of closed sets is closed, it follows that E_n is closed. But then E_n is compact as it is closed and bounded. Suppose that $z \in U$. Pick m such that $|z| < m$. Let $Z = \mathbb{C} - U$. Then Z is a closed subset and

$$
Z' = \{ \, z \in Z \, | \, |z| < m+1 \, \}
$$

is closed and bounded, so that Z is compact. Suppose that Z' is nonempty. Then the infimum of the distance from Z' to z is achieved by $\delta > 0$. Any other point of Z has distance at least one from z_0 . Pick $n > m$ and $1/n < delta$. Then $z \in E_n$ so that

$$
\bigcup_{n\in\mathbb{N}} E_n = U.
$$

Thus E_1, E_2, \ldots exhaust U.

4. (15pts) Prove that a family $\mathcal F$ of locally bounded holomorphic functions on a region U is equicontinuous on any compact subset E .

Solution:

Let $z_0 \in E$. By assumption we may find $r > 0$ and $M > 0$ such that if $|z - z_0| < r$ then $z \in U$ and $|f(z)| \leq M$. Pick two points z and z' such that $|z - z_0| < r$ and $|z' - z_0| < r$. By Cauchy's integral formula

$$
f(z) - f(z') = \frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{w-z} dw - \frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{w-z'} dw
$$

=
$$
\frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)(z-z')}{(w-z)(w-z')} dw
$$

=
$$
\frac{z-z'}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{(w-z)(w-z')} dw.
$$

If we suppose that $|z - z_0| < r/2$ and $|z' - z_0| < r/2$ then we get

$$
|f(z) - f(z')| \le \frac{r}{2\pi} \left| \int_{|w - z_0| = r} \frac{f(w)}{(w - z)(w - z')} dw \right| \le 4M,
$$

as $|w - z| > r/2$ and $|w - z'| > r/2$.

5. (20pts) (i) Let $U \neq \mathbb{C}$ be a simply connected region and let $z_0 \in U$. Construct an injective holomorphic function $f: U \longrightarrow \Delta$ such that $f(z_0) = 0$ and $f'(z_0) > 0$, where Δ is the unit disc.

Solution:

Pick $a \notin U$. As U is simply connected we can construct a holomorphic FICK $a \notin U$. As U is simply connected we can construct a holomorphic
branch of the square root $\alpha(z) = \sqrt{z-a}$. Let $w \in \mathbb{C}$. If w belongs to the image of h then $-w$ does not. It follows that the image of α is contained in a half plane, Im $e^{i\phi}w \geq 0$. Let $\beta(w) = e^{-i\phi}w$. Then the image of the composition $\beta \circ \alpha$ is contained in the upper half plane. Let $w_0 = \beta \circ \alpha(z_0)$. Let

$$
\gamma(z) = \frac{z - w_0}{z - \bar{w}_0}.
$$

Then γ is a Möbius transformation which sends the real axis to the unit circle and w_0 to 0. It follows that $\gamma \circ \beta \circ \alpha$ sends the upper half plane to the unit circle and sends z_0 to 0. α , β and γ are all injective so that the composition is injective and the derivative is nowhere zero. Suppose that the derivative of the composition at the origin is $re^{i\theta}$. Let

$$
\delta(z)e^{-i\theta}z.
$$

Then δ maps the unit disc to the unit disc, fixes the origin so that the composition $f = \delta \circ \gamma \circ \beta \circ \alpha$ is injective, sends U to the unit disc, $f(z_0) = 0$ and $f'(z_0) > 0$.

(ii) If the function f is not surjective then exhibit an injective holomorphic function $g: U \longrightarrow \Delta$ such that $g(z_0) = 0$ and $g'(z_0) > f'(z_0)$.

Solution:

Pick $a \in \Delta$ not belonging to the image of $f(z)$. As U is simply connected, we may find a holomorphic branch for

$$
F(z) = \sqrt{\frac{f(z) - a}{1 - \bar{a}f(z)}}.
$$

Note that F is the composition of f , the automorphism of the unit disc

$$
z \longrightarrow \frac{z-a}{1-\bar{a}z},
$$

and the square root. Thus F is injective and $|F(z)| < 1$. Let

$$
G(z) = \frac{|F'(z_0)|}{F'(z_0)} \frac{F(z) - F(z_0)}{1 - \overline{F(z_0)}F(z)}.
$$

Note that G is the composition of F and the automorphism of the unit disc

$$
z \longrightarrow \frac{z - F(z_0)}{1 - \overline{F(z_0)}z}.
$$

Thus G is injective and $|G(z)| < 1$. Clearly $G(z_0) = 0$. Moreover $G'(z_0) > 0$. In fact

$$
G'(z_0) = \frac{|F'(z_0)|}{1 - |F(z_0)|^2} = \frac{1 + |a|}{2\sqrt{|a|}} f'(z_0) > f'(z_0).
$$

6. (20pts) (i) Let v_1 and v_2 be two subharmonic functions on a region U. Show that $\max(v_1, v_2)$ is subharmonic.

Solution: The maximum v of two continuous functions is continuous. Let u be a harmonic function. Suppose that $v - u$ has a maximum at z_0 . We want to show that $v - u$ is constant. $v_i - u$ is subharmonic and so we may assume that $u = 0$. Suppose that $v(z_0) = v_1(z_0)$. If $z \in U$ then

$$
v_1(z) \le v(z) \le v(z_0) = v_1(z_0).
$$

Thus z_0 is a maximum of $v_1(z)$ and so $v_1(z)$ is constant. If $v(z) \neq v_1(z)$ in a neighbourhood of z_0 then we must have $v(z) = v(z_0)$ by continuity. But then $v_2(z)$ is constant and so v is constant.

(ii) Show that Dirichlet's problem does not always have a solution.

Solution: Let $U = \Delta^*$ be the punctured unit disc and let $f(\zeta)$ be equal to zero on the unit circle and 1 at the origin. Then U is a bounded region and f is a continuous function on the boundary. Let u be a harmonic function such that $\limsup_{z\to\zeta}u(z)=f(\zeta)$. Then u is bounded in a neighbourhood of the origin so that u extends to a harmonic function on the whole unit disc.

Since the values of the extended harmonic function are zero on the boundary of the disc it follows that $u \leq 0$ by the maximum principle. But then $\limsup_{z\to 0} u(z) \leq 0 < 1 = f(0)$. Then u is bounded in a neighbourhood of the

7. (10pts) Let f_1, f_2, \ldots be the iterates of the function $\sin z$, so that $f_1(z) = \sin z$ and $f_{n+1}(z) = f_n(\sin z)$. Show that f_1, f_2, \ldots is not locally bounded at the origin.

Solution: Let

$$
g(z) = \sin(iz) = f_1(iz).
$$

Then $g(z) = i \sinh(z)$. Thus

$$
g_2(z) = f_2(iz) = \sin((i\sinh(z)) = \sinh(\sinh(z)).
$$

Continuing in this way we see that if

$$
g_n(z) = f_n(iz)
$$
 then $g_{n+1}(z) = g_n(\sinh(z)).$

Let $h(x) = \sinh(x) - x$. Then

$$
h'(x) = \cosh(x) - 1 \ge 0,
$$

with equality if and only if $x = 0$. It follows that

$$
sinh(x) \ge x,
$$

with equality if and only if $x = 0$. Pick any $x₀ > 0$. It follows that the sequence of numbers

$$
x_n = g_n(x_0) \ge (1+\delta)^n x_0,
$$

for some fixed δ , depending on x_0 . Thus $f_n(z)$ is not locally bounded.

Bonus Challenge Problems

8. (10pts) State and prove Ascoli-Arzola.

9. (10pts) Let U be a bounded region and let $f: \Gamma \longrightarrow \mathbb{R}$ be a function on the boundary which is bounded, $|f(\zeta)| \leq M$.

Show that the Perron function u associated to the Perron family $\mathcal{P}(f)$ is harmonic.