
8. Some examples

We present some examples of varieties, mainly surfaces, with inter-
esting Mori cones.

Definition 8.1. Let C ⊂ V ' Rn be a subset of a finite dimensional
real vector space. We say that C is a cone (respectively convex sub-
set) if whenever α and β ∈ C then

λα + µβ ∈ C for all λ ≥ 0, µ ≥ 0,

(respectively such that λ + µ = 1). We say that C is salient if C
contains no positive dimensional linear subspaces.

We say that R ⊂ C is a ray of a cone C if R = R+α, for some non-
zero vector α ∈ C. We say that R is an extremal ray if whenever
β + γ ∈ R, where β and γ ∈ C, then β and γ ∈ R.

It follows by Kleiman’s criteria that the closed cone of curves of a
projective variety is salient.

Lemma 8.2. Let S be a smooth projective surface and let α =
∑
ai[Ci]

and β =
∑
bj[Cj] be two cycles, where ai > 0 and bj > 0.

If α · β < 0 then C = Ci = Cj for some i and j, where C2 < 0. If i
and j are the only two indices with this property then aibjC

2 ≤ α · β.

Proof. Clear, since

α · β =
∑

aibjCi · Cj,

and Ci · Cj ≥ 0 unless Ci = Cj. �

Lemma 8.3. Let S be a smooth projective surface.

(1) If R is R = R+α ⊂ NE(S) is an extremal ray of the closed cone
of curves of S then α2 ≤ 0.

(2) If C is an irreducible curve such that C2 < 0 then R = R+[C]
is extremal.

Proof. We will first show that R = R+α is never extremal if α2 > 0.
Let H be an ample divisor. Then H ·α > 0 by Kleiman’s criteria. Pick
a small neighbourhood U of α ∈ V such that

• β2 > 0
• β ·H > 0,

for all β ∈ U . Suppose that β ∈ U is rational. Pick k ∈ N such that
D = kβ is integral. By Asymptotic Riemann-Roch,

h0(S,OS(mD)) + h0(S,OS(KS −mD)) = h0(S,OS(mD)) + h2(S,OS(mD))

≥ χ(S,OS(mD)) > 0,
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for large m. Thus either |mD| or |KS−mD| is non-empty for large m.
But (KS −mD) ·H < 0 so that |(KS −mD)| is empty and so |mD| is
non-empty. Thus [D] ∈ NE(S) and so U ⊂ NE(S). In particular R is
not extremal.

Now suppose that C is an irreducible curve such that C2 < 0. Then
we may write

[C] =
∑

βi

where the βi generate extremal rays of NE(S). As

0 > C2 = [C] · (
∑

βi).

it follows that [C]·βi < 0 for some i. Since βi is a limit of β(j) ∈ NE(S),
(8.2) implies that βi = λ[C] + β′, where β′ ∈ NE(S) and λ > 0. As
βi generates an extremal ray, it follows that R+βi = R+[C] = R is
extremal. �

Let π : X −→ C be a Pr-bundle over a smooth curve. We recall
the classification of such bundles. We have that S = P(E), for some
rank r + 1 vector bundle over C and the two Pr-bundles Si = P(Ei)
are isomorphic over C if and only if there is a line bundle L and an
isomorphism of vector bundles E1 ⊗ L ' E2.

Now the Picard group ofX has rank two. The space of curves modulo
numerical equivalence is generated by the class of a line in a fibre and
the class of any section. Thus NE(X) ⊂ R2. Taking a compact slice,
we get a closed interval, so that topologically the situation is an open
and closed book. To get a complete description, we have two rays R1

and R2 and it suffices to determine generators for each ray.
First suppose that C = P1, so that X = S is a rational surface, a P1-

bundle over C. In this case any rank two vector bundle E has the form
OP1(a)⊕OP1(b) by a Theorem of Grothendieck. We may normalise so
that E = OP1 ⊕ OP1(−n). The resulting surface is denoted Fn. Let
f denote the class of a fibre and e the class of a section of minimal
self-intersection −n. Then

NE(X) = R+f + R+e.

But now suppose that C has higher genus. We need to say something
about all sections and multisections of π. Fortunately in characteristic
zero we only need to keep track of the sections. We recall some of the
theory of vector bundles:
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Definition 8.4. Let E be a vector bundle over a smooth curve C. The
slope of E is the rational number

µ(E) =
degE

rkE
.

We say that E is stable (respectively semi-stable) if for all quotient
vector bundles E −→ F of E, we have

µ(E) > µ(F ) (respectively µ(E) ≥ µ(F )).

We say that E is unstable if it is not semistable. We say that F
destabilises E if F is a quotient E −→ F of E and

µ(F ) < µ(E).

The maximal destabilising quotient is a quotient vector bundle
with the smallest slope and the largest rank amongst quotients with the
same slope.

Example 8.5. Suppose that

E =
r⊕

i=0

Li,

is a direct sum of line bundles.

If degLi = di, then

µ(E) =
d0 + d1 + · · ·+ dr

r + 1
and µ(Li) = di.

As F = Li is a quotient of E, E is never stable and it is semistable if
and only if degLi is independent of i. Let m = mini di. If m 6= µ(E),
then the maximal destabilising quotient is

r⊕
i:di=m

Li.

Lemma 8.6. Let E be a vector bundle over a smooth curve C.
Then E is semi-stable if and only if E ′ = f ∗E is semi-stable for all

covers f : C ′ −→ C.

Proof. One direction is clear; if E −→ F destabilises E then E ′ −→
F ′ = f ∗F destabilises E ′.

Suppose that E ′ is not semi-stable. By what we already proved,
passing to a finite cover of C ′ we may assume that f is Galois, with
Galois group G ⊂ Aut(C ′). Let E ′ −→ F ′ be a maximal destabilising
subsheaf. Then F ′ is canonical, whence invariant under the action of
G ⊂ Aut(C ′). But this means that F ′ = f ∗F for some vector bundle
F and F destabilises E. �
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Remark 8.7. It is not true that if E is stable then f ∗E is stable.

It can happen that f ∗E is semistable. Also it is not true that if V
is an arbitrary vector bundle on C ′ which is invariant under G then
V = f ∗W , for some vector bundle W on C. In fact this can fail even
for line bundles. We need the fact F ′ is a quotient of E ′ = f ∗E.

Lemma 8.8. Let C be a smooth curve and let π : X = P(E) −→ C be
a Pr-bundle over C.

TFAE

(1) E is stable (respectively semi-stable).
(2) −KX/C · Σ > 0 (respectively ≥ 0) for all curves Σ ⊂ X, where

KX/C = KX − π∗KC is the relative canonical divisor.

Example 8.9. Let C be a curve of genus at least two. Suppose that
E is a general rank two stable vector bundle, which admits an exact
sequence

0 −→ OC −→ E −→ L −→ 0,

where L is a line bundle of positive degree d ≤ g (such exist by general
theory). Let S = P(E).

If E is chosen generically (see for example [1]) then there is a section
C0 of minimal self-intersection d. Suppose that Σ is a multi-section of
S, so that f : D = Σ −→ C is dominant. I claim that Σ2 > 0. Let
Y = P(f ∗E). Then

f ∗Σ = Σ0 + Σ1,

where Σ0 is a section of Y −→ D. But then

Σ2 = Σ0 · f ∗Σ ≥ Σ2
0.

As f ∗E is stable we may replace X by Y and Σ by Σ2
0, so that we may

assume that Σ is a section of X −→ C. But then

(KX + Σ) · Σ = KΣ = π∗KC .

Thus

Σ2 = −KX/C · Σ > 0,

by assumption. Consider NE(S). One edge is given by f the class of a
fibre. What about the other edge? Suppose that this is generated by
α. All curves other than F have positive self-intersection. By (8.3) we
must have α2 = 0. Thus NE(S) is not a closed cone.

Rescaling we may suppose that α = σ − af , where σ is the class of
Σ and a ≥ 0. We have

d− 2a = α2 = 0.
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Thus the divisor D = 2Σ− dF = −KX/C is a divisor which intersects
every curve positively, but which is not ample. This gives an example
in characteristic zero where Kleiman’s criteria is sharp.

Example 8.10. Let S = E×E the product of a general elliptic curve.

Then ρ(S) = 3. Let fi be the class of a fibre and let δ be the class
of the diagonal. Suppose that δ = a1f1 + a2f2. Then

ai = (a1f1 + a2f2) · f2−i = δ · f2−i = 1.

But

0 = δ2 6= (f1 + f2)2 = 2.

Thus f1 and f2 and δ define independent classes, which actually span
the Néron-Severi group.

On the other hand let D ≥ 0 be a Q-Cartier divisor. Then D2 ≥ 0
with equality if and only if D = 0, as can be seen by acting by a
general translation. Thus NE(S) is half of a classical cone. There
are uncountably many extremal rays, and at most countably many
contractions. Most rays are not rational.

Example 8.11. Let S be obtained from P2 by blowing up nine points
p1, p2, . . . , p9.

Suppose first that these points are the nine points of the intersection
of two general smooth cubics. Then S is the total space of the pencil,
and there is a morphism f : S −→ P1 whose fibres are the elements
of the pencil. The nine exceptional divisors E1, E2, . . . , E9 are then
sections of this fibration. The generic fibre C of f is an elliptic curve
(over the function field C(P1) = C(t)) and the nine sections define nine
points e1, e2, . . . , e9. Since the pencil is general, it follows that these
points generate a subgroup of C, isomorphic to Z8. This subgroup then
corresponds to a subgroup of the automorphism group of S over the
base. The orbit of the nine exceptional divisors gives infinitely many
exceptional divisors. Each exceptional divisor generates an extremal
ray of the closed cone of curves.

What is worse, −1-curves persist under small deformations. If we
therefore perturb these nine points to nine very general points, infin-
itely many of these −1-curves survive. The resulting surface does not
have any automorphisms, and yet its Mori cone is still very compli-
cated.

Let us end these series of examples with Zariski’s famous example:

Example 8.12. Pick a smooth cubic curve C in P2 and let S be the
blow up of f : S −→ P2 at ten very general points p1, p2, . . . , p10 of C.
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Let E1, E2, . . . , E10 be the ten exceptional divisors and let Σ be the
strict transform of C.

Then Σ is a curve of self-intersection 9 − 10 = −1. By a result due
to Artin, there is a contraction morphism π : S −→ T contracting Σ,
where T is a normal algebraic space (or if you will an analytic space).
I claim that T is not a projective variety.

Suppose it were. Then T would have an ample divisor D. But I
claim it has no non-zero Cartier divisors at all. We have

π∗D ∈ A1(S) = Z11 = Z[f ∗H] +
10∑
i=1

Z[Ei],

where H is a line in P2. So

π∗D ∼ aπ∗H −
∑

aiEi.

Now
π∗D · Σ = D · π∗Σ = 0.

Thus
3a =

∑
ai.

Moreover π∗D|Σ would be linearly equivalent to zero. Thus there would
be some curve B of degree d in P2 such that

B|C ∼
∑

bipi.

But this contradicts the fact that our ten points of C are general.
Note that there are then plenty of nef divisors D on S which are

zero on C but which are not semiample (since if D were semiample, it
would descend to T ).

Definition 8.13. A stable n-pointed curve of genus g is a con-
nected curve of arithmetic genus g, with only nodes as singularities,
with n marked points p1, p2, . . . , pn contained in the smooth locus, such
that the normalisation of every component isomorphic to P1 has at least
three special points (either a node or a marked point).

The moduli space of genus g, n-pointed stable curves M g,n is
a projective variety whose points are in natural correspondence with
isomorphism classes of stable n-pointed curves of genus g.

Note that M1,1 ' M0,4 ' P1. Indeed, the second isomorphism is
given by the j-invariant, and the first is a consequence since an elliptic
curve double covers P1 over 4 points.

These gives finitely many rational curves in M g,n, which we call vital
curves. Indeed take a stable curve of genus g−1 with n points (respec-
tively a stable curve of genus g with n − 3 points) whose components
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are copies of P1 with 3 labelled points, together with one component
with only two labelled points. Now attach an elliptic to the special
component (or a copy of P1 with three marked points). The resulting
curve is a point of M g,n. Varying the moduli of the elliptic curve (or
of the four points), gives a curve C ⊂M g,n.

Conjecture 8.14 (Faber, Fulton, Mumford). NE(M g,n) is spanned by
the classes of the vital curves.

Theorem 8.15 (Keel, Gibney, Morrison). To prove (8.14) it suffices
to prove the case when g = 0.
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