16. CONE AND CONTRACTION THEOREM

The cone and contraction theorem are valid for kawamata log termi-
nal pairs. These results are due principally to Kawamata and Shokurov:

Definition 16.1. Let 7: X — Z be a proper morphism and let D be
an R-Cartier divisor. We say that D is mw-big if its restriction to the
general fibre is big.

Let D be an R-divisor. We say that D is m-semiample if there is
a contraction ¢: X — Y over Z such that D = ¢*H, where H is an
ample over Z, R-divisor on Y.

Note that if 7: X — Z is birational then every divisor is big over
Z as the generic fibre is a point.

Theorem 16.2 (Kawamata-Viehweg vanishing). Let 7: X — Z be a
projective morphism and let D be an integral Q-Cartier divisor.

If (X, A) kawamata log terminal, D — (Kx + A) is w-nef and w-big
then R'm,Ox (D) =0 fori > 0.

Theorem 16.3 (Base point free theorem). Let 7: X — Z be a pro-
jective morphism.

If (X, A) kawamata log terminal, Kx + A is w-nef and A is w-big
then Kx + A is m-semiample.

Corollary 16.4. Let m: X — Z be a projective morphism.
If (X, A) is kawamata log terminal and Kx + A is w-nef and w-big
then Kx + A is m-semiample.

We indicate how ((16.4)) is derived from (16.3). We will need a simple
result about kawamata log terminal pairs:

Lemma 16.5. Let (X, A) be a kawamata log terminal pair and let D
be any R-Cartier divisor.

If D > 0 then we may find 6 > 0 such that (X, A+ D) is kawamata
log terminal.

Proof. Pick alog resolution of (X, A+ D), 7: Y — X. By assumption
if we write

Ky +T =71"(Kx + A)
then |I'] <0. If G = 7*D then

7(0D) = 0D = 6G.
and so

Ky +T +0G =" (Kx + A+ 6D). O
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Proof of (16.4)). By assumption Kx + A ~g D > 0. Pick 6 > 0 such
that (X, A + éD) is kawamata log terminal. As A + 6D is m-big we

may apply (6.3) to
Kx +A+6D ~g (1+6)(Kx + A)

to conclude that Kx + A is w-semiample. O

Theorem 16.6 (Cone Theorem). Let (X, A) be a kawamata log ter-
minal pair and let m: X — Z be a projective morphism.
Then

NE(X) = NE(X)x,1as0 + »_ Ry = RY[C],

where R; are countably many extremal rays spanned by rational curves
C; contracted by 7, such that 0 < —(Kx + A) - C; < 2n.

In particular if H is any m-ample divisor, then there are only finitely
many of these curves such that (Kx + A+ H) - C; < 0.

We sketch a proof of a stronger version of ((16.6). We will need some
preliminary definitions and results:

Definition 16.7. Let (X, A) be a log pair.

A non kawamata log terminal place is a valuation of log dis-
crepancy at most zero. A non kawamata log terminal centre is
the centre of a non kawamata log terminal place. We say that a non
kawamata log terminal centre is mingmal if it is minimal with respect
to inclusion.

The non kawamata log terminal locus Nklt(X, A) is the union
of the non kawamata log terminal centres.

In the case when (X, A) is log canonical we will also refer to a non
kawamata log terminal place (respectively centre, respectively locus)
as a log canonical place (respectively centre, respectively locus).

Example 16.8. Let (X = P2 A = () where C is a nodal cubic.
Then (X, A) is log canonical and the non kawamata log terminal centres
are C' and the node. The node is minimal and the non kawamata log
terminal locus is the C.

We will need a basic result about the calculus of log canonical centres:

Theorem 16.9. Let (X, A) be a log canonical pair.

(1) There are only finitely many log canonical centres.
(2) The intersection of two log canonical centres is a union of log
canonical centres.
(3) A minimal log canonical centre is normal.
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Theorem 16.10. Let (X, A) be a log pair and let m: X — Z be a
projective morphism.
Then

NE(X) = NE(X)ky1az0 + tNE(Z_x) + Y _ R = RY[CY],

where i: Zo, — X 18 the inclusion of the non kawamata log terminal
locus and R; are countably many extremal rays spanned by rational
curves C; contracted by m, such that 0 < —(Kx + A) - C; < 2n.

In particular if H is any m-ample divisor, then there are only finitely
many of these curves such that (Kx + A+ H) - C; < 0.

Corollary 16.11. Let (X, A) be a log pair and let m: X — Z be a
projective morphism.
If (X, A) is log canonical outside finitely many points then

NE(X) = NE(X)xy4az0 + ) Ri = R¥[CI],

where R; are countably many extremal rays spanned by rational curves
C; contracted by 7, such that 0 < —(Kx +A) - C; < 2n

In particular if H is any m-ample divisor, then there are only finitely
many of these curves such that (Kx + A+ H) - C; < 0.

Proof. Immediate from ({16.10)), since Z_, contains no curves. U
The following key result is due to Kawamata:

Theorem 16.12. Let (X, A) be a log pair where X is projective and
kawamata log terminal. Let H be an ample divisor and let V' be the
normalisation of a non kawamata log terminal centre W'.

If (X,A) is log canonical at the generic point of W then we may
write

(Kx +A+H)|ly =Ky +06,

where (V,0) is a log pair and the non kawamata log terminal locus

of (V,©) is the restriction of the non kawamata log terminal locus of
(X, A).

Definition 16.13. Let (X, A) be a log canonical pair and let D > 0 be
an R-Cartier divisor. The log canonical threshold of (X,A) with
respect to D 1s

A=sup{t e R|(X,A+tD) is log canonical }.
Proof of (16.10]). We just prove the absolute case, that is, when Z is

a point. As usual pick an ample divisor A such that if u is the nef
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threshold of (X,A) with respect to A then D = Kx + A + pA =
Kx + A+ H is zero on only one (Kx + A)-extremal ray R.

Let v = v(X, D) be the numerical dimension. There are two cases.
If v < n, that is, if D is not big then we are looking for rational curves

which cover X. We apply (14.7) to Dy, Do, ..., Dy,

D — D ifi<v+1
"1 H otherwise.

With this choice, we have
Dy-Dy-...D,=0
and
—Kx-Dy-...D,=—-D1-Dy-...D,+A-Dy-...D,+H -Dy-...D,
> 0.
Thus implies that X is covered by rational curves > such that
H-Dy-Dg-----D,
—Kx-Dy-Dg-----D,

The first condition implies that 3 spans the extremal ray R. Using the
first equality, we can rewrite the second inequality as

—(Kx+A)-S=H-%

D-X=0 and H-YX<2n

<2
= n—KX'DQ'Dg""'Dn

—(Kx +A) Dy -Dg----- D,
—Kx-Dy-Dg-----D,
—Kyx Dy Dg----- D,
<2n
—Kyx-Dy-Dg----- D,
= 2n.

=2n

Now suppose that D is big. Pick G such that H — G is ample, close
enough to H such that G is ample and Kx + A + G is big. Then we
may find B > 0 such that

B~r Kx+A+G.
Consider the closed sets
Z, = NKIt(X, A + G + tB).
If £t =0 then we get Z_, and if

t<s then Zy C L.
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If ¢ is large then Z,; is equal to the support of B and by Noetherian
induction
{Z|te0,00)}

is a finite set. Let W be a closed irreducible subset with normalisation
V and let j: V. — X be the composition of the normalisation and
inclusion. We say that R comes from V if there is a ray S of NE(V)
such 7,5 = R. In this case note that we can choose S extremal.

By construction B-R < 0. It follows that R = R>qa and § € NE(X)
is close enough to o then B - < 0 and we may write

p = Zai [C] where B-C; <0.

It follows that C; C B so that 8 comes from the normalisation V' of
a component W of B. But then R comes from the normalisation of a
component V of B.

Pick V with the property that it is the normalisation of a component
W of some Z;, R comes from V and W is minimal with this property.
If V' is the normalisation of a component of Zy = Z__, then there is
nothing to prove. Otherwise let A be the log canonical threshold of
(X, A+ G) with respect to B at the generic point of V. By we
may find (V, ©) such that

(Kx+A+>\B+G>|V:KV—|—@,

and

Nklt(V,0) = Z_|v.
Clearly (Ky + ©)-S < 0 and by assumption S does not come from
Nklt(V, ©). Therefore we are done by induction on the dimension. [
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