
MODEL ANSWERS TO THE SECOND HOMEWORK

1. (i) Suppose that (a, b, c) is a point of the sphere. The antipodal
point is (−a,−b,−c). (−a,−b,−c) is sent to the
Thus antipodal points are sent to points z, z′ such that zz̄′ = −1.
Given a non-zero complex number z there is a unique complex number
z̄′ such that zz̄′ = −1; indeed

z′ = −1

z̄
.

On the other hand, given any point of the sphere there is a unique
antipodal point.
(ii) The points on the top face all lie on horizontal circle. This circle
is sent to a circle centred at the oigin in C2. The four vertices are sent
to the four points on this circle which make an angle of π/4 with the
real and imaginary axes.
It suffices to calculate the radius r of this circle. We use similar tri-
angles. Consider the distance from a vertex to the z-axis. This is the
hypotenuse of a right-angled triangle whose other sides are 1/2. Thus
this distance is √(

1

2

)2

+

(
1

2

)2

=
1√
2
.

The same line segment is the side of a right-angled triangle whose
hypotenuse is goes from the centre of the triangle to a vertex which
has length 1. Thus the other side has length√

12 −
(

1√
2

)2

=
1√
2
.

One triangle of the two similar triangles has a vertex at the North pole,
a vertex on the z axis and the top of the cube and the third vertex a
vertex of the cube on the same face. The other triangle has vertices
the North pole, the origin and the projection of this vertex of the cube.
We have

r

1/2
=

1√
2

1− 1√
2

.

Thus

r =
1

2(
√

2− 1)
.
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It follows that the four vertices on the top of the cube are sent to

2 +
√

2

4
(1 + i),

2 +
√

2

4
(−1 + i),

2 +
√

2

4
(−1− i), 2 +

√
2

4
(1− i).

The other four vertices of the cube are antipodal to the first four points.
By (i) the other four points are

2

2 +
√

2
(1 + i),

2

2 +
√

2
(−1 + i),

2

2 +
√

2
(−1− i), 2

2 +
√

2
(1− i).

2. We have to show that there is a unique Möbius transformation that
carries three distinct point p1, p2, p3 to three other distinct points q1,
q2, q3.
To show that the group of Möbius transformations is thrice transitive
it suffices to prove that the orbit of any set of three points, is the set
of all three-tuples.
In other words we are free to choose one set of points as we please. We
choose q1 =∞, q2 = 0 and q3 = 1.
We first send p1 to q1. We may assume that p1 6=∞. Then p1 = a ∈ C
and z −→ 1/(z−a) sends p1 to q1. Thus we may assume p1 = q1 =∞.
Now z −→ az + b fixes p1. Suppose that p2 = λ ∈ C. Then choose
a = 1 and b = −λ. This sends p2 to q2 = 0.
Thus we may assume p1 = q1 and p2 = q2. Note that z −→ az fixes p1
and p2.
Finally suppose that p3 = µ. The transformation z −→ (1/µ)z maps
p3 to q3.
Thus the group of Möbius transformations is certainly thrice transitive.
Now suppose that the Möbius transformation

z −→ az + b

cz + d

fixes 0, 1 and∞. As it fixes∞, c = 0. Rescaling we may assume d = 1.
As it fixes 0, b = 0. Finally as it fixes 1, a = 1. But then we have the
identity transformation.
3. There are two ways to do this problem. Both start the same way.
Note that if we differentiate f(z) then we get

∑
nanz

n−1.
The most straightforward thing to do is then multiply this by z to get
zf ′ =

∑
nanz

n. Repeating this three times gives us what we want

(z(z(zf)′)′)′ =
∑

n3anz
n.

Another way to proceed is to differentiate f three times. This gives∑
n(n− 1)(n− 2)anz

n−3.
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Now multiply by z3 to get∑
n(n− 1)(n− 2)anz

n.

This is almost right. Subtracting, we see that we get an error involving
a quadratic polynomial in n. Differentiating twice and doing the same
thing, we reduce the error to a linear polynomial and so on. Details
are left to the reader.
4. Easy, take z2n = n, z2n+1 = 0. This sequence is unbounded but has
no limit.
5. The sequence zn converges to infinity if and only if the sequence
yn = 1/zn tends to zero. Now nothing can be said about the real or
imaginary parts of zn, apart from the fact that at least one must be
tending to infinity. Indeed the sequence zn = a + ibn, where a and b
are reals and a is arbitrary and b is non-zero, tends to infinity. On the
other hand the real part is constant.
Replacing zn by izn, clearly the same holds for the imaginary part.
Given any complex number z, the sequence zn = nz tends to infinity.
Taking z = eiθ it is clear that the argument of the sequence tends to θ.
On the other hand the modulus |z| has to approach infinity.
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