MODEL ANSWERS TO THE FIRST HOMEWORK

1. Tt suffices to prove the following general result:

Lemma 0.1. Let f(x) and g(x) be general real rational functions. Let
n be a positive integer.

(1) Then the nth derivative of
f(x) exp(g(z)),

i a punctured neighbourhood of zero, has the form

fi(x) exp(g(x)),

where fi(x) is a rational function.
Now suppose that g(x) = —1/x2.
(2) The limit of
f(x) exp(g(x))

as x approaches zero is zero.
(3) Define a function ¢(z) in a neighbourhood of zero, by setting

_ ) fw)exp(g(x)) forx #0
#e) = {0 for x =0,

where g(x) = 1/x*. Then the nth derivative of ¢(x) at zero is
zero.

Proof. We first prove (1). By an obvious induction it suffices to prove
this result in the case n = 1. Since we are working in a punctured
neighbourhood of zero, we may assume that both f(z) and g(z) are
defined. We can then calculate the derivative of f(z)exp(g(x)) using
the standard rules of calculus. We get

[f () exp(g(x))]" = f'(x) exp(g(x)) + f(x)g'(x) exp(g(z))
= f1(x) exp(g()),
where fi(z) is the rational function f’(z) + f(x)g'(x). Hence (1).
To prove (2), note that we may write f(z) = z"f1(x), where both

x
the numerator and denonominator of fi(x) are coprime to x. Since
lim, o f1(x) = f1(0) it suffices to show that

lim 2" exp(g(x))
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is equal to zero. The first trick is to replace x by y = 1/2%. As x
approaches zero, y approaches co. Thus we are reduced to calculating

lim 2"/2 exp(—x).
T—00

Now if n < 0 the limit is obviously zero, since both terms are approach-
ing zero. Otherwise one term is going to zero and the other to infinity.
Applying L’ Hopital’s rule enough times, we reduce to the case n < 0
(in fact n = —1/2) and the limit is zero. Hence (2).

By (1) and induction, we may assume that n = 1. We need to calculate
the limit

@) esplo@) = 6(0) L f (@) explo(r)
z—0 x—0 z—0 x
Now apply (2). d
2. Same as 1.
3. We have
@.9) w2y?
T = 7
u 9 y "I/’Q + y4 b
and
vz, y) = o
7y - $2 + y4 .

Consider first what happens as we approach zero along a line. Take
the line y = ma and suppose that x # 0. Then
4 2
2 z 2 T
u(z,y) =u(lr,mer) =m"—— =m"——.
( y) ( ) 72 + m4:1:4 1+ m4$2
Thus the limit as x approaches zero is zero. Moreover if m = 0, then
we get u(z,0) = 0. If we look at x = 0, then we get u(0,y) = 0.
In terms of v we get
4 2
3 x 3. X
v(z,y) =v(r,mer) =m’———7—=m’——.
(z,9) ( ) 22 + migh 1 + miz2
Thus the limit as x approaches zero is zero. Moreover if m = 0, then
we get v(z,0) = 0. If we look at =z = 0, then we get v(0,y) = 0. In

particular

ou ov ou ov
%—0, %—O, a—y—O, and a—y—O,

at zero, and so the Cauchy-Riemann equations are trivially satisfied.
Now suppose that you take the family of conics x = my?. Then
my'(my® + iy) y+i

= 2 = = .
f(Ly)—f(my 7y) m2y4+y4 my1+m2
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In this case

of  2y+i

8_y —m1+m2.
Evaluating at y = 0 we get

of . m

a_y —z—1+m2.

Clearly this depends on the choice of m. For example if m = 0 we
get zero, but if m = 1 we get i/2. Thus f is not differentiable, since
the value of the limit depends on the path you choose to approach the
origin.

Note that we did not show that v and v are C!, just that their deriva-
tives exist. The proposition proved in class requires this condition.

4. There are two ways to prove this. Essentially we prove an appropri-
ate chain rule in both cases.

Suppose that z is a point where ¢ is holomorphic and f is holomorphic
at g(z). We may suppose that z = 0. We show that

z—0 z — O
There are two cases. Suppose that there is a solution to g(z) = ¢(0),
in any punctured neighbourhood of 0. We claim that both sides are
zero. As g is differentiable at 0, it follows that ¢’(0) = 0. Thus the
RHS is zero. On other the hand, if g(z) = ¢(0) then the numerator of
the limit is zero and so the LHS is zero.
Thus to compute the limit, we may assume that g(z) # ¢(0). In this

case

flg(2)) = f(9(0)) _ flg(2) — f(9(0)) g(z) — 9(0)
z—0 9(z) —9(0) z=0

Since the limit of a product is the product of the limits, we are done.

Aliter: Suppose that w = g¢(z) and that f and g are arbitrary C!

functions of x and y. Note that there is a chain rule for %
0J(6(=) _ 050y, 01 0
0z owdz  Jw oz’
which can be proved formally, from the definition of the operator %.
But if f and ¢ are holomorphic, then

dg

FE
and of
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and so

0(9(2) _,
oz
and we are done.
5. Set u(x,y) = ax® + bx’y + cxy® + dy®. For u to be harmonic we
must have

Pu  O%*u

VUZ@+8_Q2:

0.
We get
6ax + 2by + 2cx + 6dy = 0.
Equating coefficients of x and y gives
c=—3a and b= —3d.

Thus u(z,y) = ax’® — 3dr?y — 3axy® + dy? is the general form. In this
case a harmonic conjugate would satisfy the differential equations

0 0
v 3az? — 6dry — 3ay? and @ 3da?® + 6axy — 3dy”.
oy ox
Integrating the first equation gives
v(x,y) = 3ax’y — 3dxy® — ay® + ¢(z),

where ¢(z) is an arbitrary function of x. Plugging this into the second
equation gives

¢ (x) + 6axy — 3dy* = 3dz* + 6axy — 3dy”.

Thus
¢ (r) = 3da?,
and so ¢(x) = dz? is a solution. Thus the harmonic conjugate is
v(x,y) = da® + 3ax’y — 3dzy® — ay’.

Aliter: One can also use the trick introduced in the 2nd lecture. If
f(z) = u+iv then

f(2) =2u(z/2,2/2i) — u(0,0)
= 2(a(z/2)* — 3d(2/2)*(2/2i) — 3a(z/2)(z/2i)* + d(z/2i)?)
= (a+3di + 3a+di)2° /4
= (a+di)2*
= (a + di)(z + iy)*.
The imaginary part is

v(x,y) = dz® + 3az’y — 3dxy® — ay®.



