6. EXAMPLES OF FUNCTIONS DEFINED BY SERIES

We look at some interesting examples of functions given by power
series. Consider the differential equation

y(z) =y,
subject to the initial value y(0) = 1. We look for solutions y which are

holomorphic functions of z.
We posit a solution that is given by a power series with centre the

origin,
y(z) = Z anz".

Y (z) = Z(n + 1)a,z" and y(0) = ay.

Hence the initial condition implies that

Then

ag = 1.
As y/(z) = y(z), comparing terms, we get
ani1 = an/(n+1).
Clearly the unique solution to this recurrence relation is
a, = 1/nl.

Thus we get

z z"
y(z) =e* = Z prk
n=0
For obvious reasons we call this function the exponential function. Note
that
lim inf (n!)"/™ > lim inf(n/2)"/* = oo,

(since we are taking reciprocals the limsup gets replaced by a liminf)
so that the radius of convergence is infinity, that is, the exponential
function is everywhere holomorphic, that is, the exponential function
is entire.

Note that the holomorphic function f(z) = e*** satsifies the differ-
ential equation

=1
subject to the initial condition f(0) = e®. On the other hand this
differential equation has the unique solution f(z) = e*e*. Thus

ea—l—b — eaeb’

for all complex numbers a and b.
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In particular e*e™* = € = 1 and so e is never zero. As the coeffi-

cients of the power series are all real

e” = éz.

So
eV = eWe ™™ =0 =1
and
‘eeriy' — |€x‘

Having defined e?, it is possible to define two other entire holomor-
phic functions,

eiz + e—iz
cos(z) = —
and . .
) ez _ p—iz
sin(z) = Y
Then
cos(z) =1 —2%/2 4 24 /4 + ...
and

sin(z) = 2 — 2% /31 4+ 2° /51 + .. ..
By definition
e = cosz +isinz,
and so
cos® z +sin® 2 = 1.
Consider the periodicity of e?*. Suppose that
ei(z—i—c) _ eiz
Then e = 1. Since 1 is a point on the unit circle, ic must be imaginary,
that is, ¢ = § € R, where ¢ = 1. Using standard arguments, one can
show that there is a non-zero real number 6 such that ¥ = 1.
On the other hand, consider the map

f:R— 5! given by c— e,

where S! is the unit circle |z| = 1. f is a homomorphism of topological
groups, that is, f is a group homomorphism of the additive group to
the circle and f is continuous. The kernel is a closed subgroup.

Proposition 6.1. Let f: U — C be a holomorphic function.

Then f is constant if f' is zero, or the real part u is constant, or
the imaginary part v is constant, or the modulus is constant, or the
argument is constant.



Proof. If f/ = 0 then all of the partials are zero and both u and v are
constant.
Suppose that u is constant. Then

and so f is constant. If v is constant then the real part of the holo-
morphic function ¢ f is constant and so f is constant.

Suppose the modulus is constant. Then u? 4+ v? = 0 is constant and
SO

ou ov
U% + ’U% = 0.
Similarly
O—U@—f—v@ = —u@—kv@.
dy Jy ox ox
These two simultaneous linear equations imply that either
ou_ov_,
oxr  Ox ’

or that the determinant u?+v* = 0. In the latter case f = 0 is constant.
Either way f is constant.

Finally if the argument is constant then v = kv for some constant k
(or v is identically zero, in which case f is constant). But u — kv is the
real part of (14 ik)f and so f must be constant. O

By applied to the entire holomorphic function 2 — €%, the
kernel is not the whole of R, since then the argument of €% is constant
and so €”* is a constant function.

Since the kernel is closed there must be a smallest such 6. This is
called the period and it is denoted by 2. Clearly this definition of 7
is consistent with the standard one.

We want to define the logarithm log(z) of z. Clearly the logarithm
should be the inverse of the exponential. That is, if

w = log(2) then z=e".

Unfortunately the inverse is not uniquely defined, simply because the
exponential is periodic, so that there are infinitely many w such that
z = e". If wy is one of them, then they are all given by wy + 2k,
where k£ € Z is an integer.

A region U is any connected open subset of C. A branch of the
logarithm on U, is a continuous function w = f(z) = log(z) on U, such
that €” = z. Given one branch f(z) there are infinitely many others,

given by f(z) + 2kmi, where k € Z is an integer.
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We will show that we can construct a branch of the logarithm, on
the region

U=C—-{zeC|Im(z) =0,Re(z) <0}.
Suppose that w = x 4 1y. Then the equation

e’ =z,
reduces to the two equations,
e’ = |z|
and
e = i.
||

The first equation has the solution z = log(|z|), where we take the
ordinary real logarithm. The second equation has infinitely many so-
lutions. We pick the unique solution such that —7 <y < 7.

It is convenient to rewrite all of this in the form

i0

z =re”.
Here
6 =log(i)
E
and
r=|z|.

0 is called the argument, denoted arg z, and |z| is called the modulus.
We check that this choice of # gives us a continuous function for the
logarithm.
Suppose wy = uy + ivy, where |v1] < 7. Fix € > 0. Consider the
subset A of C given by
|lw —wy| > e, lor| <7 and lu — uy| < log2.

This is closed and bounded, and so it is compact, and it is non-empty;,
if € is sufficiently small. The function

e — ¢
is continuous and so it attains its minimum p. p > 0 as A does not
contain any point of the form
wy + 2kme.
Let
9 = min(p, 56“1).
Suppose that

|z — z1] = |e¥ — "] < 6.
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Then w ¢ A by choice of p. If u < u; — log 2 then
1
eV — et > et — e > 56“1 >0

impossible and if u > u; — log 2 then
e — et > e — et > e >0
impossible.

Thus |w — w;| < € and the function is continuous. It is easy to
see that the logarithm is a holomorphic function, whose derivative is
1/z. This is essentially the inverse function theorem. Having chosen a
branch of the logarithm, we get branches of other well-known functions.

For example, consider defining a branch of the square root w =
f(z) = /2. We define the branch on the same open subset. We want

to solve

szZ.

Taking logs of both sides, we get
2log(w) = log(z).
Thus
w = exp(log z/2).
If we write z = re'?, then
log(z) = log(r) + i6.

S0
log z/2 = log /% +i6 /2,

w = \/re’?,

That is, to find the square root on this branch, simply take the square
root of the modulus and half of the angle. With this choice of branch,

and

Vi = explin/4) = %(1 +4).

Of course the other solution to the equation
25 =1
is

exp(i3m/4) = —(—1 —1).
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