
22. Representations of Meromorphic Functions

There are two natural ways to represent a rational function. One is
to express it as a quotient of two polynomials, the other is to use partial
fractions. The object is to do the same for meromorphic functions. As
a first try, one might consider

f(z) =
∑
k

Pk

(
1

z − bk

)
+ g(z),

where bk are the poles, and Pk is a polynomial that is called the singu-
lar part of f(z) at bk and g(z) is, of course, holomorphic. In general
the problem is that the sum of the singular parts need not converge.
Nevertheless, it turns out that the sum of the singular parts does often
converge and in particular cases, g has a very nice representation.

In fact it is always the case that we can find polynomials pk such
that the series ∑

k

Pk

(
1

z − bk

)
− pk(z),

converges. We will prove this in the case the region is the whole complex
plane.

We first need a result about the remainder in Talyor’s Theorem:

Theorem 22.1. If f(z) is holomorphic in a region U , containing a,
then we may write

f(z) = f(a)+f ′(a)(z−a)+
f ′′(a)

2
(z−a)2+· · ·+f

(n−1)(a)

(n− 1)!
(z−a)n−1+fn(z)(z−a)n,

where

fn(z) =
1

2πi

∫
C

f(w) dw

(w − a)n(w − z)

is holomorphic and C is any circle centred around a contained in U .

Proof. Everything is clear except for the statement about the expres-
sion for fn(z). Since fn(z) is holomorphic we have

fn(z) =
1

2πi

∫
C

fn(w) dw

(w − z)
,

by Cauchy’s integral formula. If we take the expression for f(z) above
and replace z by w and solve for fn(w) we get

fn(w) =
f(w)

(w − a)n
− f(a)

(w − a)n
− f ′(a)

(w − a)n−1
− · · · − f (n−1)(a)

(n− 1)!(w − a)
.

1



If we multiply by the reciprocal of w− z and integrate over C, then
ignoring constant factors, every term but the first has the form

Fi(a) =

∫
C

dw

(w − a)i(w − z)
,

for i ≥ 1. But

F1(a) =
1

z − a

∫
C

1

w − z
− 1

w − a
dw = 0

is holomorphic and so

i!Fi+1(a) = F
(i)
1 (a) = 0. �

Theorem 22.2. Let bk be a sequence of complex numbers which tends
to infinity and let Pk be polynomials without constant term.

Then there are meromorphic functions with the given singular part
at bk:

Pk

(
1

z − bk

)
.

Moreover, any such function has the form

f(z) =
∑
k

[
Pk

(
1

z − bk

)
− pk(z)

]
+ g(z),

where pk are polynomials and g is entire.

Proof. Assume that no bk is zero. Let pk(z) be the Taylor polynomial
of

Pk

(
1

z − bk

)
,

up to a certain degree n. Then (22.1) applied to the circle |z| = |bk|
2

implies that ∣∣∣∣Pk ( 1

z − bk

)
− pk(z)

∣∣∣∣ ≤ 2M

(
2|z|
|bk|

)n+1

,

for all |z| ≤ |bk|/4, where M is the maximum of Pk in the disc |z| ≤
|bk|/2.

Now choose n sufficiently large so that the RHS is less than 2−k.
Thus the sum of the singular parts converges. Moreover, the series
converges uniformly in the disc |z| ≤ R, if we omit the terms with
|bk| ≤ 4R. Thus by Weierstrass’ Theorem (applied to concentric discs
whose radius goes to infinity) g is an entire holomorphic function. �
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It is interesting to see how this works in practice. Consider the
function

f(z) =
π2

sin2 πz
.

Then f(z) has double poles at the points z = n. Now at z = 0 the
singular part is

1

z2
.

As sin2 π(z − n) = sin2 πz, it follows that the singular part at z = n
is

1

(z − n)2
.

Now the series
∞∑

n=−∞

1

(z − n)2

is convergent for z 6= n, simply by comparing this sequence with∑ 1

n2
.

Moreover it is uniformly convergent on any compact set which omits
the singular parts on that set. Thus

π2

sin2 πz
=

∞∑
n=−∞

1

(z − n)2
+ g(z),

where g(z) is entire. I claim that g(z) is zero.
Now both sides, possibly omitting g(z), are periodic, with period

one. Thus g(z) is periodic, with period one. If we write z = x + iy
then

sin πz =
eiπxe−πy − e−iπxe−πy

2i
and so

sin πz =
e−iπxe−πy − eiπxe−πy

−2i
.

Taking the product we get four terms that can be paired to give

| sin πz|2 = cosh2 πy − cos2 πx.

where we added and subtracted 1/2.
If we fix x then the LHS tends uniformly to zero as |y| → ∞. Now

the same holds for any term of the sum

1

(z − n)2
.
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As the sum converges uniformly for |y| ≥ 1, it follows that the infinite
sum tends uniformly to zero as |y| → ∞. Thus g(z) tends uniformly
to zero as |y| tends to infinity for fixed x. Therefore g(z) is bounded
on the strip 0 ≤ |x| ≤ 1. But then g is bounded, by periodicity and
so g(z) is a constant by Liouville. As it tends to zero, it must be zero.
Thus

π2

sin2 πz
=

∞∑
n=−∞

1

(z − n)2
.

Suppose that we try to integrate both sides to get a new identity.
The LHS is the derivative of −π cot πz. The term

1

(z − n)2

on the RHS is the derivative of
−1

z − n
.

Unfortunately the sum ∑ 1

z − n
,

diverges. If we subtract the first term of the Taylor series we get a
convergent series, as∑

n6=0

(
1

z − n
+

1

n

)
=
∑
n6=0

z

n(z − n)
,

is comparable to
∑

1/n2. This series converges uniformly on compact
subsets, provided we omit all singular parts and thus, differentiating
term by term, we get

π cotπz =
1

z
+
∑
n6=0

(
1

z − n
+

1

n

)
,

up to a constant. Now clumping positive and negative terms together
we get

π cotπz =
1

z
+
∑
n>0

(
2z

z2 − n2

)
.

Now both sides are clearly odd functions. Thus the additive constant
is in fact zero.

Let’s try to go backwards. Suppose we start with

lim
m→∞

m∑
n=−m

(−1)n

z − n
=

1

z
+
∑
n 6=0

(−1)n
2z

z2 − n2
.

Then this represents a meromorphic function.
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If we separate the odd and even terms we get:
2m+1∑

n=−2m−1

(−1)n

z − n
=

m∑
n=−m

1

z − 2n
−

m∑
n=−m−1

1

z − 1− 2n
.

Taking the limit we get

π

2
cot

πz

2
− π

2
cot

π(z − 1)

2
=

π

sin πz
,

so that
π

sin πz
= lim

m→∞

m∑
n=−m

(−1)n

z − n
.
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