
2. Holomorphic and Harmonic Functions

Basic notation. Considering C as R2, with coordinates x and y,
z = x+ iy denotes the standard complex coordinate, in the usual way.

Definition 2.1. Let f : U −→ C be a complex valued function defined
on some open subset U ⊂ C.

We say that f(z) is differentiable at z0, with derivative f ′(z0), if

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
.

We say that f is holomorphic if it is differentiable at every point of
U

It is easy to prove, as in the real case, that the sum, difference, prod-
uct, quotient, and composition of holomorphic functions is holomorphic
and that the usual formulas apply.

The obvious first step in analyzing the condition that the deriva-
tive exists, is to see what happens if we approach z0 along a line, in
particular along a horizontal and vertical line.

Along a horizontal line, we fix y = y0 and vary x. Using the obvious
notation z0 = x0 + iy0, f(z) = f(x, y) and setting z = x+ iy0 we get

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

= lim
x→x0

f(x, y0)− f(x0, y0)

x− x0

=
∂f

∂x

∣∣∣∣
(x0,y0).

Similarly along a vertical line, we fix x = x0 and vary y. Setting
z = x0 + iy, we get

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

= lim
y→y0

f(x0, y)− f(x0, y0)

i(y − y0)

=
1

i

∂f

∂y

∣∣∣∣
(x0,y0)

= −i∂f
∂y

∣∣∣∣
(x0,y0).

In other words, if f is holomorphic then

∂f

∂x

∣∣∣∣
(x0,y0)

= −i∂f
∂y

∣∣∣∣
(x0,y0).
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There is another way to interpret all of this. Suppose we start with
f(x, y), a function f : R2 −→ R2. Now we can express x and y in terms
of z and z̄,

x =
1

2
(z + z̄) and y =

1

2i
(z − z̄) = − i

2
(z − z̄).

Thus we can consider f(x, y) as a function f(z, z̄) of z and z̄. Now
formally differentiating and formally applying the chain rule we would
have

∂f

∂z
=
∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z
=

1

2

∂f

∂x
− i

2

∂f

∂y
,

and
∂f

∂z̄
=
∂f

∂x

∂x

∂z̄
+
∂f

∂y

∂y

∂z̄
=

1

2

∂f

∂x
+
i

2

∂f

∂y
.

This suggests that we introduce operators

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

In these terms, the condition above becomes

∂f

∂z̄
= 0.

In other words, a function f : C −→ C is holomorphic if and only if “it
does not depend on z̄”.

Separating into real and imaginary parts, we get the famous Cauchy-
Riemann equations. Suppose that we write f = u+ iv. Then

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
.

Lemma 2.2. If
u : U ⊂ R2 −→ R

is a C1-function then

ε = u(x+ h, y + k)− ∂u

∂x
h− ∂u

∂y
k

goes to zero faster than (h, k) goes to zero, for any (x, y) ∈ U .

Proof. By assumption

δ = u(x+ h, y)− u(x, y)− ∂u

∂x

∣∣∣∣
(x,y).

h.

goes to zero faster than h. On the other hand,

η = u(x+ h, y + k)− u(x+ h, y)
∂u

∂y

∣∣∣∣
(x+h,y)

k.
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goes to zero faster than k. As the partials are continuous, the difference

∂u

∂y

∣∣∣∣
(x+h,y)

− ∂u

∂y

∣∣∣∣
(x,y)

goes to zero as h goes to zero. So

ζ =

(
∂u

∂y

∣∣∣∣
(x+h,y)

− ∂u

∂y

∣∣∣∣
(x,y)

)
k

goes to zero faster than k. Thus

ε = u(x+ h, y + k)− u(x, y)− ∂u

∂x
h− ∂u

∂y
k

= u(x+ h, y + k)− u(x+ h, y)− ∂u

∂y
k + u(x+ h, y)− u(x, y)− ∂u

∂x
h

= u(x+ h, y + k)− u(x+ h, y)− ∂u

∂y

∣∣∣∣
(x+h,y)

+ ζ + δ

= η + ζ + δ,

which goes to zero faster than (h, k). �

Proposition 2.3. A function f(z) is holomorphic if and only if its
real and imaginary parts u(x, y) and v(x, y) are C1 (that is, the first
derivatives exist and are continuous) and satisfy the Cauchy-Riemann
equations.

Proof. We have already seen that the derivatives of u and v exist and
satisfy the Cauchy-Riemann equations. We will see later that if f
is holomorphic then the derivative of f is holomorphic (so that f is
infinitely differentiatible) and this will imply that u and v are C1.

Suppose that u and v are C1.
(2.2) implies that

u(x+ h, y + k)− u(x, y) =
∂u

∂x
h+

∂u

∂y
k + ε1

v(x+ h, y + k)− v(x, y) =
∂v

∂x
h+

∂v

∂y
k + ε2
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where ε1 and ε2 go to zero faster than h+ ik.

f(x+ h, y + k)− f(x, y) = (u(x+ h, y + k)− u(x, y)) + i(v(x+ h, y + k)− v(x, y))

=
∂u

∂x
h+

∂u

∂y
k + ε1 + i

∂v

∂x
h+ i

∂v

∂y
k + ε2

=

(
∂u

∂x
+ i

∂v

∂x

)
h+

(
∂u

∂y
+ i

∂v

∂y

)
k + ε1 + ε2

=

(
∂u

∂x
+ i

∂v

∂x

)
(h+ ik) + ε1 + ε2

As ε1 + ε2 approaches zero faster than h + ik, it follows that f is
differentiable. �

It is interesting to further investigate the properties satisfied by u
and v.

Recall that the Laplacian ∇ of a real function u(x, y) : R2 −→ R is
defined to be

∇u =
∂2u

∂x2
+
∂2u

∂y2
,

and that function u is said to be Harmonic if it is C2 and the Laplacian
vanishes, that is

∇u = 0.

Now suppose that f = u + iv, where f is holomorphic, so that u is
the real part of a holomorphic function. Latter we will show that f is
infinitely differentiable, so that in particular u and v are both C2. On
the other hand

∂2u

∂x2
=

∂2v

∂x∂y

=
∂2v

∂y∂x
= −∂

2u

∂y2
,

where we used the fact that if v is C2 then its mixed partials are equal.
Thus

∇u =
∂2u

∂x2
+
∂2u

∂y2
= 0,

and so u is harmonic. Similarly v is harmonic. Two functions u and
v that satisfy the Cauchy-Riemann equations, are called conjugate
harmonic and v is said to be the conjugate harmonic function of u.
Note that this is a slight abuse of language, since v is only determined
up to a constant.

Given a harmonic function u it is instructive to try to construct the
harmonic conjugate v.
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For example u = x2 − y2 is harmonic. ∂u
∂x

= 2x and ∂u
∂y

= −2y. Thus

the harmonic conjugate satisfies

∂v

∂x
= 2y and

∂v

∂y
= 2x.

Take the first equation and integrate with respect to x. We get that
v(x, y) = 2xy + g(y) where g is an arbitrary function of y. Now differ-
entiate with respect to y. Then

2x+ g′(y) = 2x.

Thus g(y) is constant. Thus the harmonic conjugate of u is v = 2xy.
Of course in this case the corresponding holomorphic function is

f(z) = u(x, y) + iv(x, y) = (x2 − y2) + i2xy = (x+ iy)2 = z2.

In fact there is another way to compute harmonic conjugates, which
does not depend on using integration. In other words, we will find a
formula for a holomorphic function f(z) in terms of its real part u(x, y).

The trick is to consider the function g(z, z̄) = f(z). Note that

∂g

∂z
=
∂ḡ

∂z̄
=
∂f

∂z̄
= 0,

so that g(z, z̄) = g(z̄) is a function only of z̄ (g is sometimes known as
an antiholomorphic function).

Then

u(x, y) =
1

2
(f(x+ iy) + g(x− iy)) .

Now treat this equality formally and extend it to the case where
x = z/2, y = z/2i. Thus

u(z/2, z/2i) =
1

2
(f(z) + g(0)) .

Now f(z) is determined up to an imaginary constant. Thus we may
as well assume that f(0) is real. In this case, we may take f(0) =
g(0) = u(0, 0). Thus

f(z) = 2u(z/2, z/2i)− u(0, 0).

For example, suppose that u(x, y) = x2 − y2. Then

f(z) = 2u(z/2, z/2i)−u(0, 0) = 2(z/2)2−2(z/2i)2 = z2/2+z2/2 = z2.

Note that for this to work, the expression u(z/2, z/2i) has to make
sense (for example, u is given as a power series).
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