19. RESIDUES

Let f be a holomorphic function with an isolated singularity at a.
Pick a small circle 7y centred at a and consider the integral

p= A £(2)d.

P is called a period of f. As the function f(z) = Zia has period 27i
the function

9(z) = f(z) — R , where R = i

zZ—a 271

has period zero, with respect to v. It follows that g is the derivative of
some function.

Definition 19.1. Let f be a holomorphic function with an isolated
singularity at a. The restdue of [ at a is the unique complex number
R, so that the function

R

)
Z—Q

9(z) = f(z) -

for some small 0 < |z — a| < 0, is the derivative of another function.

It is useful to employ the following notation for the residue,
R = Res.—, f(2).

Theorem 19.2 (Residue Theorem). Let U be a region and let f be a
holomorphic function on U — {aq, as, ...} with isolated singularities at
ai,as, . ... Let v be a path in U that does not contain any of the points

ai,as, ... and such that the winding number around any point outside
U s zero.
Then
1
3 Lf dz = zj:n('y; aj) Res.—q; f(2).

Proof. Pick small circles v;, centred at a;, contained in U. Consider
the path v = v — > n(v;a;)y;. We want to apply Cauchy’s integral
formula to +/. It suffices to check that the winding number of 4" about
any complex number a € C — (U — {ay, as, ..., ax}) is zero. Note that
the regions of C —~' are equal to the regions of C — «y, union the small
discs about each a;. By assumption the only non-zero winding numbers
for ~ are about a;. By definition of 4’ the winding number of +" about
a; is zero. It follows that 4’ has zero winding number about any point
inae€C—(U—{ayag,...,a}).
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Thus by Cauchy’s integral formula

/Vlf(z)dz:o.

168z = Y i,

Rearranging, we get

v J
where
= [ fz)de
i
The result follows by definition of R;. U

Of course, (19.2)) is useless without an effective means of computing
the residue:

Lemma 19.3. Suppose that f(z) has a pole of order one at a. Then
Res,—, f(2) = lim(z — a) f(2).
z—a

Proof. By assumption

b b_
f(z) = Z_la+b0+b1(z—a)+b2(z—a)2+--- = Z_1a+9(2);
where ¢(z) is a holomorphic function. By definition the residue is b_;.
Clearly b_; = lim,_,,(z — a) f(2). O

One of the main uses of the residue Theorem is to compute contour
integrals. For example, consider computing the following integral:

< 1
/ dz.
o 1+ a2

Consider the following contour. Let v be the closed path, that starts
at zero, goes along the real axis to R, describes a semi-circle of radius
R and then traverses the z-axis from —R to zero. Consider applying
the Residue Theorem to

)= =

f(2) has two isolated singularities at z = +i. The winding number of ~
about the first is 1 and about the second is zero. The residue at z = ¢
can be computed in one of two ways.
For the first observe that
1 1 -1 1

52 =izt 2iz+9) T2iz=i)
Thus the residue at z =i is by definition 1/2i.
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Alternatively multiply f by (z — i), to get
1
Z41

At z =i we get 1/2i.
Either way by the residue Theorem

1
/ de:w.
,yl—i—z

On the other hand the integral may by split into two parts. The
integral along the real-axis from —R to R and the integral along a
semi-circle. Along the semi-circle,

1

)<z

so that the integral along the semi-circle is at most
R
R?—1
which tends to zero as R tends to infinity.
As the function —L5 is even, it follows that the integral from —R to

1+z
R is twice the integral from 0 to R. Hence

< 1
/ dx—z.
o 1+ 22 2

Now consider the integral

o
sinx
dx.
0

(74
e dz,
gl
where ~ is the contour that starts at p goes along the z-axis to R,
goes around a semi-circle counterclockwise to —R, goes back to —p
and traverses a semi-circle, clockwise around the origin. The only pole

of the function

™

Consider the integral

is at the origin and the winding number of v about the origin is zero.
Thus by the residue Theorem, the integral of f(z) around ~ is zero.
We split the integral into four pieces.

Rw P T
—dx+/f dz+/ —da:—l—/f



The two integrals along the x-axis, when combined, give

Reix _ g—ix C [Psing
- drx =2 dz.
p x p T

Consider the behaviour around the big semi-circle.

/ € dz / e’ qg
Yo z 0
S/ e—RSinﬁde
0
) T—0 . T
g/ d0+/ e_RS‘“5d0+/ de
0 ) T—0

< 28 + e fising,

As R tends to infinity, we may let § approach zero. Thus the integral
goes to zero.
Now consider the behaviour around the small semi-circle.

/e—dz:/—der/e dz.
"/Z ’YZ v <

There are two ways to see that the first integral goes to zero as p
goes to zero. Either use the Taylor series expansion of €. Or use the
fact that

e —1
z
is the derivative of a holomorphic function.
On the other hand, by direct computation, the first integral comes

out as
1 0
/—dz:/ 1df = —mi.
v # ™

Thus, letting R — oo and p — 0, we get

22'/ MY e — i =0,
0

T
so that - .
sin
/ de =2
0 T
Finally consider
/ log sin 6 d6.
0
Consider the function
1 —e** = —2ie” sin 2.
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As

1 —e* =1—e % (cos2x +isin2z),
we see that this function takes on real negative values only if y < 0 and
x = nm/2. So if we delete these half lines, we may assume that log is
single-valued and holomorphic.

We now integrate log(1 — e*#) along the rectangle with corners, 0, T,
m—+14Y and 7Y. At the points 0 and m we choose arcs of small quarter
circles, of radius ¢, to avoid these points.

By periodicity, the integrals along the vertical sides cancel. The
integral along the top horizontal line goes to zero, as Y goes to infinity.

I claim that the same is true over the quarter circles. The imaginary
part of the logarithm is bounded, so we only need worry about the real
part. Now

’1 _ eQiz|

2|
for z — 0 so that the logarithm behaves like logd. As dlogd tends to
zero, the integral tends to zero around the first quarter circle. Similarly

for the second quarter circle.
Thus

— 2

Y

/ log(—2ie™ sinx) dz = 0.
0
Suppose we choose the standard branch of the logarithm. As x ranges
between 0 and m we have
log(e™) = ix and log(—i) = —mi/2.
Thus

mlog?2 — m%i/2 +/ log sin x dz + 7% /2i = 0.
0
and so

/ logsinz dx = —7log 2.
0
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