
17. Counting Zeroes and the Open Mapping Theorem

Let f be a holomorphic function such that f(a) = b. We say that
the order of f at a is is the order of f − b, that is, the largest n such
that

f i(a) = 0 for all 0 < i < n.

Theorem 17.1. Let f(z) be a non-constant holomorphic function on
a disc ∆. Suppose that a ∈ C and let z1, z2, . . . be the complex numbers,
with repetition according to the order, such that f(z) = a. Then∑

j

n(γ, zj) =
1

2πi

∫
γ

f ′(z)

f(z)− a
dz,

where γ is any closed curve in ∆, not containing any of the points
z1, z2, . . . and where the sum has only finitely many terms.

Proof. Replacing f by f−a we may assume that a = 0, so that z1, z2, . . .
are the zeroes of f .

Since the only accumulation points of z1, z2, . . . are on the boundary
of ∆, possibly replacing ∆ by a smaller disc we may assume that f has
only finitely many zeroes in ∆. By definition of the order of a zero and
an obvious induction, we may write

f(z) = (z − z1)(z − z2)(z − z3) . . . (z − zk)g(z),

where, as pointed out above, we allow repetition. By assumption g(z)
is a holomorphic function on ∆ with no zeroes z in ∆. We have

f ′(z)

f(z)
=

1

z − z1

+
1

z − z2

+ · · ·+ 1

z − zk
+
g′(z)

g(z)
.

On the other hand ∫
γ

g′(z)

g(z)
dz = 0,

by Cauchy’s Theorem, since . The result follows by integrating both
sides around γ and applying the definition of the winding number. �

The formula above reads more concisely as

Corollary 17.2.

n(Γ, a) =
∑

n(γ, zj).

Proof. Pick a parametrisation of

γ : [c, d] −→ C.
Then Γ has the parametrisation

Γ: [c, d] −→ C given by Γ(t) = f(γ(t)).
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By definition of the path integral:∫
Γ

1

w − a
dw =

∫ d

c

Γ′(t)

Γ(t)− a
dt

=

∫ d

c

f ′(γ(t))γ′(t)

f(γ(t))− a
dt

=

∫
γ

f ′(z)

f(z)− a
dz. �

Theorem 17.3. Let f be a function, holomorphic in a neighbourhood
of z0 and set w0 = f(z0).

If f(z)−w0 has a zero of order n at z0 then there is a δ > 0 and an
ε > 0, such that for all 0 < |a− w0| < ε the equation

f(z) = a subject to |z − z0| < δ

has n roots.

Proof. Note that f ′ is a holomorphic function, so that its zeroes are
isolated. Pick δ > 0 so that f(z) is holomorphic, f ′(z) is only zero if
z = z0 and the equation

f(z) = w0,

has only the root z = z0, for |z−z0| < δ. Let γ be the circle |z−z0| = δ
and let Γ be the image of γ. As w0 /∈ Γ and Γ is closed, we may find
ε > 0 so that |w − w0| < ε does not intersect Γ.

Suppose that 0 < |a − w0| < ε. Then a and w0 belong to the same
connected component of C− Γ. Therefore

n(Γ; a) = n(Γ;w0).

As f(z)−w0 has a zero of order n, (17.2) implies that the RHS is n. As
f ′(z) 6= 0 for z 6= z0, then the order of zero of any solution to f(z) = a
is one. The result then follows by (17.2). �

Definition 17.4. Let f : X −→ Y be a map of topological spaces. f is
called open if the image of every open set is open.

Theorem 17.5. (Open Mapping Theorem) Every holomorphic map is
open.

Proof. As every open subset is a union of open balls, it suffices to prove
that the image of a sufficiently small open ball is a union of open balls.
This follows from (17.3). �

Corollary 17.6. Let f(z) be holomorphic at z = z0 and suppose that
f ′(z0) 6= 0.

Then f is a local homeomorphism and locally conformal.
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Proof. By (17.3) f is locally a bijection. Since it is also open and
continuous, it is automatically a homeomorphism. �
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