Answers to Math 20F Final Practice Problems

December 12, 2014

Warning: this document contains only *answers* to the practice problems. It does not contain full solutions. Moreover, for problems where the answer is, effectively, the entire worked out solution (such as proofs, or justification for true/false questions), the answer has either been omitted or shortened. (This means, for example, that if you look at the justification for a true/false answer, you may see a very kurt reason, but on an exam, you would have to explain it in more detail.)

- (a) Show ℬ spans P₂ and is linearly independent.
 (b) 5t² + 5 = 1(1) + 1(t − 2)² + 4(t² + t).
- 2. (a) $\lambda = 2$ (multiplicity 1), $\lambda = 3$ (multiplicity 2).

(b)
$$\lambda = 2$$
: $\left\{ \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} \right\}$. $\lambda = 3$: $\left\{ \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} -1\\ 0\\ -1 \end{bmatrix} \right\}$
(c) $P = \begin{bmatrix} 1 & -1 & -1\\ -1 & 1 & 0\\ 1 & 0 & -1 \end{bmatrix}$; $D = \begin{bmatrix} 2 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 3 \end{bmatrix}$
3. (a) $\left\{ \begin{bmatrix} 1/\sqrt{11}\\ -3/\sqrt{11}\\ 0\\ 1/\sqrt{11} \end{bmatrix}, \begin{bmatrix} 3/\sqrt{11}\\ 1/\sqrt{11}\\ -1/\sqrt{11}\\ 0 \end{bmatrix} \right\}$.
(b) $\begin{bmatrix} 1\\ 7/11\\ -4/11\\ -1/11 \end{bmatrix}$.

(c)
$$\frac{15\sqrt{11}}{11}$$
.
(d) $\left\{ \begin{bmatrix} 3/10\\1/10\\1\\0 \end{bmatrix}, \begin{bmatrix} -1/10\\3/10\\0\\1 \end{bmatrix} \right\}$.
4. (a) $(A - \lambda I)^{\mathsf{T}} = A^{\mathsf{T}} - \lambda I$

(b) Consider
$$A(c_1 \vec{x}_1 + c_2 \vec{x}_2)$$
.

5.
$$P = \begin{bmatrix} -2/3 & -1/\sqrt{5} & 4\sqrt{5}/15\\ -1/3 & 2/\sqrt{5} & 2\sqrt{5}/15\\ 2/3 & 0 & \sqrt{5}/3 \end{bmatrix}; D = \begin{bmatrix} -2 & 0 & 0\\ 0 & 7 & 0\\ 0 & 0 & 7 \end{bmatrix}.$$

6.
$$\vec{x}_0 = \begin{bmatrix} 1/3\\ 14/3\\ -5/3 \end{bmatrix}; \text{ yes.}$$

- (b) No. Take two distinct lines through the origin in \mathbb{R}^2 . (On an exam you need to write more than this. Actually come up with two different lines, and show which subspace property their union violates.)
- 8. (a) No. Rank-nullity \implies smallest dim for nullspace is 2.
 - (b) Yes. 5×5 system with unique solution, then add equation 0 = 0.
 - (c) Use determinants or invertible matrix theorem to use that D^{-1} exists.
- 9. (a) Usual argument.

(b) Basis for Col(A) :
$$\left\{ \begin{bmatrix} 2\\-1 \end{bmatrix}, \begin{bmatrix} -1\\0 \end{bmatrix} \right\}$$
. Basis for Nul(A) : $\left\{ \begin{bmatrix} 3\\6\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\7\\0\\1 \end{bmatrix} \right\}$.

A has rank 2.

(c) Yes.
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
.

(d)
$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
.

10. (a)
$$\lambda = 1$$
 (multiplicity 1), $\lambda = 2$ (multiplicity 1), $\lambda = 3$ (multiplicity 1).
(b) $P = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 0 \\ 1 & 2 & 0 \end{bmatrix}$; $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.
(c) $10 \cdot 2^{100}\vec{x} + 2 \cdot 3^{100}\vec{y}$.
11. (a) $\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 5/2 \\ 5/2 \end{bmatrix} \right\}$.
(b) $\begin{bmatrix} 8 \\ 5/2 \\ 21/4 \end{bmatrix}$
12. (a) False. (Take *A* to be $(n + 1) \times (n + 1)$.)
(b) False. (Take *P* = 0.)

- (c) True.
- (d) True. $A^{\mathsf{T}} = A^{-1}$ is also orthogonal.^{*}
- (e) True. det(AB) = det(A) det(B).
- (f) True.
- 13. (a) $\vec{x} = A^{-1}\vec{b}$.[†]
 - (b) Usual definition.

(c)
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.
14. $\begin{bmatrix} -9 \\ 10 \\ 3 \\ 0 \end{bmatrix} - x_4 \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$.

*This is true for *our* class, since we require an orthogonal matrix to be square. However, for the class in which this problem was posed, the answer was probably false.

[†]On the exam which had this question, likely \vec{b} was given explicitly, so one would have to actually do a bit of computation.

15. (a)
$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

(b)
$$\begin{cases} \begin{bmatrix} 3 \\ -1 \\ -1 \\ 1 \end{bmatrix} \end{cases}$$

16. (a) 3
(b)
$$\{ \begin{bmatrix} 1 & 0 & 0 & 1/2 & -7/2 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & -1 & -1/2 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 3/2 & 2 \end{bmatrix} \}$$

(c)
$$\begin{cases} \begin{bmatrix} 2 \\ 0 \\ 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 3 \\ 11 \end{bmatrix} \}$$

17. 1, 1/2, and 1/3; multiply both sides of $A\vec{x} = \lambda \vec{x}$ by A^{-1} .

18. (a) True.
$$B = A^{-1}0$$
.
(b) False. $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$.
(c) True.
(d) False. $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, $B = I_{2\times 2}$.
19. $\begin{bmatrix} 21/5 \\ -3/5 \\ 12/5 \\ 6/5 \end{bmatrix}$.

20. The vectors are linearly *dependent*.

21.
$$x_2 = 10/3$$
.

22. (a) True.

(b) False.

^{\ddagger}There are multiple correct answers; this basis is obtained from the *reduced* row echelon form.

- (c) True.
- (d) False.
- (e) False.
- (f) True.
- (g) False.
- (h) True.
- (i) False.

23.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

- 24. (a) 0.
 - (b) n 1.
 - (c) $I_{n \times n}$.
 - (d) 0.
 - (e) Consider det(A).
- 25. Start with $c_1\vec{v}_1 + c_2\vec{v}_2 + c_3\vec{v}_3 + c_4\vec{v}_4 = \vec{0}$. Show $c_4 = 0$, then conclude that $c_1 = c_2 = c_3 = 0$. (On an exam you would *need* to fill in more details here.)

26.
$$\begin{bmatrix} 9 & -2 \\ 2 & 5 \end{bmatrix}$$
: eigenvalue 7, eigenvector
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.
$$\begin{bmatrix} 6 & -2 & 0 \\ -2 & 9 & 0 \\ 5 & 8 & 3 \end{bmatrix}$$
: eigenvalues 3, 5,
10; eigenvectors
$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
,
$$\begin{bmatrix} 2 \\ 1 \\ 9 \end{bmatrix}$$
,
$$\begin{bmatrix} -7 \\ 14 \\ 11 \end{bmatrix}$$
.
27.
$$P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
;
$$D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
.
28.
$$U = \begin{bmatrix} 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 0 & 1 & 0 \end{bmatrix}$$
;
$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
.
$$A^{10} = \begin{bmatrix} \frac{3^{10}+1}{2} & \frac{1-3^{10}}{2} & 0 \\ \frac{1-3^{10}}{2} & \frac{1-3^{10}}{2} & 0 \\ 0 & 0 & 2^{10} \end{bmatrix}$$
.
29.
$$\|\vec{u}\| = \sqrt{3}$$
;
$$\|\vec{v}\| = \sqrt{6}$$
.

30. (a)
$$\begin{cases} \begin{bmatrix} -1\\3\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\1\\1\\-1 \end{bmatrix}, \begin{bmatrix} -1\\-1\\3\\-1\\3\\-1 \end{bmatrix} \end{cases}$$

(b)
$$\begin{bmatrix} 2/3\\1/3\\-1/3\\0 \end{bmatrix}$$

(c)
$$\frac{2\sqrt{3}}{3}$$

(d)
$$\vec{y}_{0} = \begin{bmatrix} 2/3\\1/3\\-1/3\\0 \end{bmatrix}, \vec{y}_{1} = \begin{bmatrix} 1/3\\-1/3\\1/3\\1 \end{bmatrix}$$

31. (a)
$$\begin{bmatrix} 3\\0\\-3 \end{bmatrix}$$

(b)
$$\vec{x}_{0} = \begin{bmatrix} 2\\-1\\-1 \end{bmatrix}$$

(c)
$$\begin{cases} \begin{bmatrix} 1\\0\\1 \end{bmatrix} \end{cases}$$

32. Start with $c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3 = \vec{0}$. Take dot product and conclude that $c_1 = 0$, $c_2 = 0$, and $c_3 = 0$. (As before, you *need* to fill in more details here.)

33. Basis for
$$W$$
: $\left\{ \begin{bmatrix} 1\\-4\\0\\1 \end{bmatrix}, \begin{bmatrix} 5\\1\\-4\\-1 \end{bmatrix} \right\}$. Basis for W^{\perp} : $\left\{ \begin{bmatrix} 16/21\\4/21\\1\\0 \end{bmatrix}, \begin{bmatrix} 1/7\\2/7\\0\\1 \end{bmatrix} \right\}$.

34. (a) True.

- (b) False.
- (c) True.
- (d) False.

- (e) False.
- (f) False.§
- (g) False.
- (h) False.
- (i) True.[¶]
- (j) False.
- (k) True.
- (l) True.
- (m) True.
- (n) True.
- (o) False.
- (p) True.
- 35. (a) True.
 - (b) True.
 - (c) True.
 - (d) False.
 - (e) True.
 - (f) False.
 - (g) False.
 - (h) True.
 - (i) True.
 - (j) True.
 - (k) False.[∥]
 - (l) False.
 - (m) True.
 - (n) False.

[§]The question as stated does not say that D is a *diagonal* matrix. [¶]This assumes that the inverse exists.

Again, they did not give the dimensions of the matrix.

- (o) True.
- (p) False.
- (q) True.
- (r) False.**
- (s) True.
- (t) True.

36. (a) 27

(b)
$$\begin{bmatrix} 1/9 & 1/9 & 1/18 \\ -4/9 & 5/9 & -1/9 \\ 0 & 0 & 1/3 \end{bmatrix}$$
.
(c) \mathbb{R}^3 .
(d) $\lambda^3 - 9\lambda^2 + 27\lambda - 27$.
(e) $\lambda = 3$.
(f) $E_3: \left\{ \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1/4 \\ 0 \\ 1 \end{bmatrix} \right\}$.

- (g) Not diagonalizable.
- 37. (a) 17.
 - (b) 6. B is invertible, so pivot in every row.
 - (c) 6. B is invertible, so pivot in every column.
- 38. Make sure you fill in more details:
 - (a) Multiply both sides of $A\vec{x} = \vec{0}$ by A^{-1} .
 - (b) Usual argument.
 - (c) Use matrix form of dot product, i.e., $\vec{u} \cdot \vec{v} = \vec{u}^{\mathsf{T}} \vec{v}$, with columns of *A*.

^{**}Once again, we don't know the dimensions of A.