
30. Final review II

Example 30.1. Suppose that b1, b2, b3 and b4 are real numbers.
Show that there is exactly one polynomial p(t) in the vector space P3

of polynomials of degree at most 3 such that:

p(1) = b1, p′(0) = b2,

∫ 1

−1
p(t) dt = b3, and p(−1) = b4.

A general polynomial of degree at most 3 looks like

p(t) = a0 + a1t + a2t
2 + a3t

3.

We just write interpret the given conditions in terms of the coeffi-
cients a0, a1, a2 and a3.

p(1) = a0 + a1 + a2 + a3 and so a0 + a1 + a2 + a3 = b1.

p′(t) = a1 + 2a2t + 3a3t
2.

Therefore

p′(0) = a1 + 2a2 + 3a3 and so a1 + 2a2 + 3a3 = b2.

∫ 1

−1
p(t) dt =

∫ 1

−1
a0 + a1t + a2t

2 + a3t
3 dt

=
[
a0t + a1t

2/2 + a2t
3/3 + a3t

4/4
]1
−1

= 2a0 + 2a3/3.

Therefore

2a1 + 2a3/3 = b3.

Finally

p(−1) = a0 − a1 + a2 − a3 and so a0 − a1 + a2 − a3 = b3.

Thus we get the system of linear equations

a0 + a1 + a2 + a3 = b1

a1 + 2a2 + 3a3 = b2

2a1 + 2a3/3 = b3

a0 − a1 + a2 − a3 = b4.
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To make things more interesting we modify these equations to:

a0 + a1 + a2 + a3 = b1

a0 + a1 + 2a2 + 3a3 = b2

a1 + a3/2 = b3

a0 − a1 + a2 − a3 = b4.

As usual we can rewrite this as A~a = ~b, where

A =


1 1 1 1
1 1 2 3
0 1 0 1/2
1 −1 1 −1



We want to know that the equation A~a = ~b always has a unique
solution. This is equivalent to saying that A is invertible.

There are two ways to check this. One is to apply Gaussian elimi-
nation and check we get four pivots:


1 1 1 1
1 1 2 3
0 1 0 1/2
1 −1 1 −1

→


1 1 1 1
0 1 0 1/2
1 1 2 3
1 −1 1 −1

→


1 1 1 1
0 1 0 1/2
0 0 1 2
0 −2 0 −2



and so

→


1 1 1 1
0 1 0 1/2
0 0 1 2
0 0 0 −1

→


1 1 1 1
0 1 0 1/2
0 0 1 2
0 0 0 1

 .

There are four pivots and so A is invertible. In fact one can see directly

that the equation A~x = ~b always has exactly one solution.
2



The other way to proceed is to compute the determinant. A is in-
vertible if and only if detA 6= 0:∣∣∣∣∣∣∣∣

1 1 1 1
1 1 2 3
0 1 0 1/2
1 −1 1 −1

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
0 1 0 1/2
1 1 2 3
1 1 1 1
1 −1 1 −1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 2 3
1 1 1
1 1 −1

∣∣∣∣∣∣+ 1/2

∣∣∣∣∣∣
1 1 2
1 1 1
1 −1 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 2 3
0 0 2
1 1 −1

∣∣∣∣∣∣+ 1/2

∣∣∣∣∣∣
1 1 2
0 2 0
1 −1 1

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
0 0 2
1 2 3
1 1 −1

∣∣∣∣∣∣−
∣∣∣∣∣∣
0 1 0
1 1 2
1 −1 1

∣∣∣∣∣∣
= −2

∣∣∣∣1 2
1 1

∣∣∣∣+

∣∣∣∣1 2
1 1

∣∣∣∣
= 2− 1 = 1.

Example 30.2. Let

W = { (a, b, c, d) | a + b = c + d, 2a + 2b = 3d }.
Find a basis for W⊥.

Implicit in this question is that W is a linear subspace. W is the set
of solutions of the homogeneous equations

a + b− c− d = 0

2a + 2b− 3d = 0.

Therefore if we put

A =

(
1 1 −1 −1
2 2 0 −3

)
then W is the null space of A. In particular W is a linear space. To
find a basis of W , apply Gaussian elimination:(

1 1 −1 −1
2 2 0 −3

)
→
(

1 1 −1 −1
0 0 2 −1

)
→
(

1 1 −1 −1
0 0 1 −1/2

)
The elimination is complete. a and c are basic variables, b and d are
free variables.

c− d/2 = 0 so that c = d/2.
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Therefore

a + b− d/2− d = 0 so that a = −b− 3d/2.

The general solution is

(a, b, c, d) = (−b− 3d/2, b, d/2, d) = b(−1, 1, 0, 0) + d(−3/2, 0, 1/2, 1).

W is the span of ~w1 = (1,−1, 0, 0) and ~w2 = (−3, 0, 1, 2).
Let ~v = (p, q, r, s) ∈ W⊥ be a general vector. By definition ~v is

orthogonal to every vector in W . As (1,−1, 0, 0) and (−3, 0, 1, 2) are a
basis of W this is equivalent to requiring that ~v is orthogonal to both
of these vectors:

~v · ~w1 = 0 and ~v · ~w2 = 0.

We get a pair of homogeneous linear equations:

p− q = 0

−3p + r + 2s = 0.

We can make this into a matrix:

B =

(
1 −1 0 0
−3 0 1 2

)
.

W⊥ is the null space of B. We can find a basis by Gaussian elimi-
nation, the usual way. But there is a much easier way.

W is nullspace of A. The nullspace of A is orthogonal to the row
space of A.

W⊥ = Nul(A)⊥ = Row(A).

A basis for the row space of A is (1, 1,−1,−1) and (2, 2, 0,−3).

Example 30.3. What are the eigenvalues of

A =


−2 3 1 1
0 1 −7 2
0 0 4 1
0 0 0 7

?

Since A is upper triangular, the eigenvalues are the entries on the
main diagonal, −2, 1, 4 and 7.
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