
3. Vectors and Matrices

We have already seen that to carry out Gaussian elimination it makes
sense to use matrices. Can we go further and make sense of linear
equations using matrix equations?

Given a system of linear equations

x + y + z = 1

2x + y + z = 2

−3x− 2y + z = 0,

we have already seen that we should write down the coefficient matrix

A =

 1 1 1
2 1 1
−3 −2 1


and the column vector

~b =

1
2
0

 .

It also makes sense to make a column vector of the variables

~x =

x
y
z

 .

(We will use arrows on top of vectors whenever we want to emphasize
that they are vectors). Finding the solutions to the original system of
linear equations is the same as finding all possible values of the vector ~x.
In terms of notation it makes sense to write down the matrix equation

A~x = ~b.

We define the matrix product of A with ~x so that this comes out
correctly. The rows of A correspond to the coefficients. So we take a
row of A and multiply it by the column vector ~x. We pair the entries

of a row of A with the entries of a column of ~b and add them together
to get a number.

In lecture 1 we checked that (x, y, z) = (1,−1, 1) is a solution to the
system of linear equations. Let’s check this using matrix multiplication: 1 1 1

2 1 1
−3 −2 1

 1
−1
1

 =

 1 · 1 + 1 · −1 + 1 · 1
2 · 1 + 1 · −1 + 1 · 1
−3 · 1− 2 · −1 + 1 · 1

 =

1
2
0

 .
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Just to get some practice, let’s check that (x, y, z) = (3, 1,−2) is not
a solution: 1 1 1

2 1 1
−3 −2 1

 3
1
−2

 =

 1 · 3 + 1 · 1 + 1 · −2
2 · 3 + 1 · 1 + 1 · −2
−3 · 3− 2 · 1 + 1 · −2

 =

 2
5
−13

 ,

nowhere close to a solution, as expected. Of course this vector is a
solution to the equation

A~x = ~c where ~c =

 2
5
−13

 .

The interesting thing is that we can interpret matrix multiplication

A~x

in an entirely different way. Instead of focusing on the rows, lets focus
on the columns: 1 1 1

2 1 1
−3 −2 1

x
y
z

 =

 1 · x + 1 · y + 1 · z
2 · x + 1 · y + 1 · z
−3 · x− 2 · y + 1 · z

 = x

 1
2
−3

+y

 1
1
−2

+z

1
1
1

 .

For example, in terms of columns 1 1 1
2 1 1
−3 −2 1

 1
−1
1

 = 1

 1
2
−3

− 1

 1
1
−2

 + 1

1
1
1

 =

1
2
0


and 1 1 1

2 1 1
−3 −2 1

 3
1
−2

 = 3

 1
2
−3

 + 1

 1
1
−2

− 2

1
1
1

 =

 2
5
−13

 ,

as before.

Definition 3.1. The vector ~b ∈ Rm is a linear combination of the
vectors ~v1, ~v2, . . . , ~vn ∈ Rm if there are scalars x1, x2, . . . , xn such that

~b = x1~v1 + x2~v2 + · · ·+ xn~vn.

The vectors 1
2
0

 and

 2
5
−13


are a linear combination of 1

2
−3

  1
1
−2

 and

1
1
1

 .

2



Putting all of this together we see that

Theorem 3.2. The matrix equation

A~x = ~b

is consistent if and only if ~b is a linear combination of the columns of
A.

Example 3.3. Is (1, 1,−3) a linear combination of (1, 0, 1), (−1, 1, 1),
(1, 1, 1) and (1, 2, 3)?

Let

A =

1 −1 1 1
0 1 1 2
1 1 1 3


be the matrix whose columns are the vectors (1, 0, 1), (−1, 1, 1), (1, 1, 1)
and (1, 2, 3). Then we want to know if the matrix equation

A~x = ~b

is consistent, where

~b =

 1
1
−3

 and ~x =


x
y
z
w

 .

To answer this question, write down the augmented matrix

B =

1 −1 1 1 1
0 1 1 2 1
1 1 1 3 −3


and apply Gaussian elimination. We eliminate the entries in the first
column: 1 −1 1 1 1

0 1 1 2 1
1 1 1 3 −3

→
1 −1 1 1 1

0 1 1 2 1
0 2 0 2 −4

 .

Now the entries in the second column:1 −1 1 1 1
0 1 1 2 1
0 2 0 2 −4

→
1 −1 1 1 1

0 1 1 2 1
0 0 −2 −2 −6

 .

Finally we turn the −2 into a pivot:1 −1 1 1 1
0 1 1 2 1
0 0 1 1 3

 .
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Note that we can always solve this equation, since there are no pivots
in the last column.

This answers the original question but let’s also figure out how to
write (1, 1,−3) as a linear combination of (1, 0, 1), (−1, 1, 1), (1, 1, 1)
and (1, 2, 3).

We apply back substitution. Note that w is a free variable. So we
might as well set w = 0. In this case z = 3. But then

y + 3 = 1 so that y = −2.

Finally this says

x + 2 + 3 = 1 so that x = −4.

Thus

−4(1, 0, 1)− 2(−1, 1, 1) + 3(1, 1, 1) + 0(1, 2, 3) = (1, 1,−3).

Note that in fact any vector in R3 is a linear combination of (1, 0, 1),
(−1, 1, 1), (1, 1, 1) and (1, 2, 3). Indeed, if we follow the same recipe as
before then the coefficient matrix is unchanged, and we will get down
to the same four columns of the echelon matrix (the fifth column will

depend very much on the original vector ~b but this won’t matter). As
there are three pivots in the first three columns, there are no pivots
in the fifth column and the linear system is consistent. In fact, by the
same argument, every vector in R3 is a linear combination of the first
three vectors, (1, 0, 1), (−1, 1, 1) and (1, 1, 1).

Definition 3.4. We say that the vectors v1, v2, . . . , vn ∈ Rm spans Rm

if every vector ~b ∈ Rm is a linear combination of v1, v2, . . . , vn.

The vectors (1, 0, 1), (−1, 1, 1) and (1, 1, 1) span R3.
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