28. SYMMETRIC MATRICES

Definition 28.1. A matriz A is symmetric if AT = A.

Note that symmetric matrices are necessarily square.
1 =2
-2 3
1 =2
5 3
1 5
-2 3)

Let’s try to diagonalise a symmetric matrix:
31
= ().
We look for the eigenvalues. If
AT = U

then ¥ is an eigenvector and A is an eigenvalue. We rewrite this equation
as

Example 28.2.
18 symmetric but

1s not. The transpose s

AU = A0 so that (A= ML)7=0.
Thus the null space of

31 A0 3—A 1
A_Ah:(13)_(OA):( 1 3—A>’
contains more than the zero vector. It follows that

det(A — \I3) =0,
so that

3—A 1
1 3—A

‘ 0
Thus
0=0B-A)>—-1=X—-6A+8=(\—2)(\—4).
The roots of the characteristic polynomial are A = 2 and A = 4. If
A = 2 then the eigenspace of A is the nullspace of

A-%:(}D.
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If we apply Gaussian elimination we get

11 . 11
11 00
x is a basic variable and y is a free variable,

z+y=0 so that r=—y.

—

1 = (1,—1) is an eigenvector with eigenvalue 2.
If A = 4 then the eigenspace of A is the nullspace of

If we apply Gaussian elimination we get

-1 1 . 1 -1 o 1 -1
1 -1 1 -1 0 0
x is a basic variable and y is a free variable,

r—y=20 so that T =1.

Uy = (1,1) is an eigenvector with eigenvalue 4.
Note that v; and v are orthogonal. Let

1
17:1 = —(]_, —]_> and ﬁg =

V2

Then u; and iy are orthonormal. We have

1
—(1,1).
\/5( )
A=PDP™,

where P is the matrix whose columns are u; and s,

1 1 1
=7 (41)
Note that P is an orthogonal matrix, that is, the columns of P are
orthonormal. So the inverse of P is the transpose of P. Therefore

A=PDP'=PDP".
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We check:

as expected.
Before we proceed, let’s record the key property of symmetric ma-
trices:

Lemma 28.3. Let A be a symmetric matriz.
If U and W are eigenvectors with distinct eigenvalues \ and p then v
and W are orthogonal.

Proof. Consider (Av) - . Note that

(AD) - = (AD) 7@ = T ATH = 07 Aw = 7 - Ad.

But
AU - W = \U - W and U- AW =7 p = pv - 0.
So
AU -0 = pu(0 - 0).
As A\ # p we must v - w = 0. But then v and @ are orthogonal. 0

Theorem 28.4. Let A be a symmetric matriz.
Then we can find a diagonal matriz A and an orthogonal matriz P
such that

A=PDP".
In particular every symmetric matrix is diagonalisable.

Example 28.5. Is

b

I
W =
— o
— =

diagonalisable?

w



Yes, since it is symmetric. Let’s diagonalise it. The characteristic
polynomial is

1-x 1 3
1 3-x 1 :(1—)\)‘

; A 1 1-A[3 1-2A

3—-A 1| 1 1
301

o o7
=1=-DB-MN1=-XN-1=-XN—=-1=XN)+3+3-93-2X)
= —X*+5A% + 41— 20
=—A=2)(A+2)(A—5).

So the eigenvalues are 2, —2 and 5. We calculate the corresponding

eigenvectors.
If A =2 we want the nullspace of A — 2/5:

-1 1 3 1 1 1 1 1 1 1 1 1
1 1 1 —1-11 3 — 10 2 4 — 10 1 2
3 1 -1 3 1 -1 0 -2 —4 000

The elimination is complete. x and y are basic variables, z is a free
variable. Let’s put z = 1:

y+2=0 so that y=—2.

But then
r—24+1=0 so that z=1.

Thus ¢} = (1,—-2,1) is an eigenvector with eigenvalue A; = 2.
If A = —2 we want the nullspace of A + 215:

31 3 1 51 1 5 1 1 51
151|—=1(313|]—=10 —-14 0] —=10 10
31 3 31 3 0 —14 0 000

The elimination is complete. z and y are basic variables, z is a free
variable. Let’s put z = 1:

y=20
But then
r+1=0 so that r=—1
Thus v, = (—1,0,1) is an eigenvector with eigenvalue Ay = —2.
If A =5 we want the nullspace of A — 515:
-4 1 3 1 -2 1 1 -2 1 1 -2 1

1 -2 1 - 1-4 1 3 - 10 =7 71 —=10 1
3 1 —4 3 1 -4 o 7 -7 0 O 0
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The elimination is complete. x and y are basic variables, z is a free
variable. Let’s put z = 1:
y—1=0 so that y=1.
But then
r—2+1=0 so that x =1

Thus ) = (1,1,1) is an eigenvector with eigenvalue A; = 5.

Therefore
A= PDPT

where

2 0 0 L (1 VB V2
0 -2 0 and P=—[-2 0 2
0 0 5 v\, 3 e
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