
27. Least Squares

Consider a system of equations

A~x = ~b

which is overdetermined, that is, the number of equations is more than

the number of variables, m > n. For most ~b there won’t be a solution.
Often this is because of noise, meaning that the data is not quite cor-

rect. In this case we expect that there is a point ~b0 very close to ~b for
which we can solve the equations.

How to choose ~b0? Well the set of all vectors ~b0 for which there is a
solution is the column space Col(A). So let’s choose the closest point
~b0 to ~b in the column space.

Definition 27.1. Let A be an m× n matrix.
The least squares solution to A~x = ~b is a vector ~x0 such that

‖~b− A~x0‖ ≤ ‖~b− A~x‖ for all x ∈ Rn.

We will see two methods to find ~x0.
Method #1

Example 27.2. Find a least squares solution to the equation A~x = ~b,
where

A =

 1 5
3 1
−2 4

 and ~b =

 4
−2
−3

 .

Let ~u1 = (1, 3,−2) and ~u2 = (5, 1, 4). We want the closest point ~b0
to the column space of A, we want the orthogonal projection of ~b onto

the column space W , the span of ~u1 and ~u2, projW ~b.
Note that

~u1 · ~u2 = (1, 3,−2) · (5, 1, 4) = 0,

so that ~u1 and ~u2 are orthogonal. So finding projW ~b is straightforward,
if we write

~b0 = α1~u1 + α2~u2,

then

α1 =
~b · ~u1
~u1 · ~u1

=
(4,−2,−3) · (1, 3,−2)

(1, 3,−2) · (1, 3,−2)
=

4

14
=

2

7
,

and

α2 =
~b · ~u2
~u2 · ~u2

=
(4,−2,−3) · (5, 1, 4)

(5, 1, 4) · (5, 1, 4)
=

6

42
=

1

7
,

1



Therefore

~b0 =
2

7
(1, 3,−2) +

1

7
(5, 1, 4) = (1, 1, 0).

Note we already know how to solve

A~x = ~b0,

The solution is

~x0 =
1

7
(2, 1).

What do we do if the columns of A are not orthogonal? We could
apply Gram-Schmidt but unfortunately this is quite expensive, that is,
it takes quite a bit of time to find an orthogonal basis of Col(A).

Method #2
We know that the vector

~b1 = ~b−~b0,

is orthogonal to the column space of A. But we already saw that

Col(A)T = Nul(AT ).

Hence
~b−~b0 ∈ Nul(AT ).

that is,

AT (~b−~b0) = ~0.

Suppose that ~x0 is a solution of

A~x = ~b0 so that A~x0 = ~b0.

Then

AT (~b− A~x0) = ~0.

Rearranging we get

Theorem 27.3. ~x is a least squares solution of A~x = ~b if and only if
~x is a solution of

ATA~x = AT~b.

Let’s solve (27.2) again, using the second method.

Example 27.4. Find a least squares solution to the equation A~x = ~b,
where

A =

 1 5
3 1
−2 4

 and ~b =

 4
−2
−3

 .
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AT =

(
1 3 −2
5 1 4

)
.

So

ATA =

(
1 3 −2
5 1 4

) 1 5
3 1
−2 4

 =

(
14 0
0 42

)
and

AT~b =

(
1 3 −2
5 1 4

) 4
−2
−3

 =

(
4
6

)
We are supposed to solve(

14 0
0 42

)(
x
y

)
=

(
4
6

)
which has the unique solution

(x, y) = (2/7, 1/7)

as expected.

Example 27.5. Find the least squares solutions to the equation A~x =
~b, where

A =


1 1 0
1 1 0
1 0 1
1 0 1

 and ~b =


1
3
8
2

 .

AT =

1 1 1 1
1 1 0 0
0 0 1 1


So

ATA =

1 1 1 1
1 1 0 0
0 0 1 1




1 1 0
1 1 0
1 0 1
1 0 1

 =

4 2 2
2 2 0
2 0 2


and

AT~b =

1 1 1 1
1 1 0 0
0 0 1 1




1
3
8
2

 =

14
4
10


3



We are supposed to solve4 2 2
2 2 0
2 0 2

xy
z

 =

14
4
10


We apply Gaussian elimination:4 2 2 14

2 2 0 4
2 0 2 10

→
2 1 1 7

1 1 0 2
1 0 1 5

→
1 0 1 5

1 1 0 2
2 1 1 7


so that

→

1 0 1 5
0 1 −1 −3
0 1 −1 −3

→
1 0 1 5

0 1 −1 −3
0 0 0 0


x and y are basic variables and z is a free variable.

y − z = −3 so that y = −3 + z.

Therefore
x+ z = 5 so that y = 5− z.

The general solution is

(x, y, z) = (5− z,−3 + z, z) = (5,−3, 0) + z(−1, 1, 1).
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