
25. Orthogonal projection

What is the distance between a point p and a plane H in R3? What
is the distance between a point p and a line L in R3? In the first case we
want a point q ∈ H such that the line pq is orthogonal to H. Similarly
we want a point q on L such that the line pq is orthogonal to L.

Let’s use vectors to solve this problem. Let’s assume that H and l
contain the origin, so that they are linear subspaces. We first treat the
second problem of a line through the origin. In this case the line L is
the span of a single vector ~u.

The point p is represented by a vector ~y. The orthogonal projection
q is a point of the line L so that there is a scalar α such that the vector
corresponding to q is ~y0 = α~u. What is left over,

~y1 = ~y − α~u
is orthogonal to ~u. So

0 = ~y1 · ~u = (~y − α~u) · ~u = ~y · ~u− α~u · ~u.
Thus

α =
~y · ~u
~u · ~u

.

The orthogonal projection of ~y onto L is then the vector

~y0 = projL ~y =
~y · ~u
~u · ~u

~u.

Note that this formula is valid in Rn.

Example 25.1. What is the distance between the point p = (1,−1, 2)
and the line L given parametrically as (t, 2t, 3t)?

Let ~y = (1,−1, 2). We want the point q on the line L closest to p.
The corresponding vector ~y0 is a multiple of ~u = (1, 2, 3).

~y0 = projL ~y =
(1,−1, 2) · (1, 2, 3)

(1, 2, 3) · (1, 2, 3)
(1, 2, 3) =

5

14
(1, 2, 3).

We want the distance between (1,−1, 2) and 5
14

(1, 2, 3):√
81

142
+

144

49
+

169

142
=

√
125

2 · 49
+

144

49
=

√
59

14
.

Now let’s turn to the first problem, the distance between a point p
and a plane H. Suppose that H is the span of two orthogonal vectors
~u1 and ~u2, so that

{ ~u1, ~u2 }
is an orthogonal basis of H.
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As before let ~y be the vector corresponding to p and let ~y0 ∈ H be
the closest vector to ~y. Then ~y1 = ~y− ~y0 is orthogonal to H, so that it
is orthogonal to ~u1 and ~u2.

As ~y0 ∈ H and { ~u1, ~u2 } is a basis of H we may find scalars α1 and
α2 such that

~y0 = projH ~y = α1~u1 + α2~u2.

We know that
~y1 = ~y − ~y0 = ~y − (α1~u1 + α2~u2)

is orthogonal to H, that is, it is orthogonal to ~u1 and ~u2. Thus

0 = ~y1 · ~u1 = (~y − α1~u1 − α2~u2) · ~u1 = ~y · ~u1 − α1~u1 · ~u1.
Solving for α1 we get:

α1 =
~y · ~u1
~u1 · ~u1

.

The same piece of algebra with the subscript 2 replacing the subscript

1 yields:

α2 =
~y · ~u2
~u2 · ~u2

.

Example 25.2. What is the distance between the point p = (3, 1, 5, 1)
and the plane spanned by the vectors ~u1 = (3, 1,−1, 1) and ~u2 =
(1,−1, 1,−1) in R4?

We check that ~u1 and ~u2 are orthogonal:

~u1 · ~u2 = (3, 1,−1, 1) · (1,−1, 1,−1) = 0.

So ~u1 and ~u2 are orthogonal. We try to write ~y = (3, 1, 5, 1) as a sum
~y0 + ~y1, where

~y0 = projH ~y = α1~u1 + α2~u2.

We have

α1 =
(3, 1, 5, 1) · (3, 1,−1, 1)

(3, 1,−1, 1) · (3, 1,−1, 1)
=

6

12
=

1

2
and

α2 =
(3, 1, 5, 1) · (1,−1, 1,−1)

(1,−1, 1,−1) · (1,−1, 1,−1)
=

6

4
=

3

2
.

Thus the closest vector to ~y = (3, 1, 5, 1) in H is

~y0 = projH ~y =
1

2
(3, 1,−1, 1) +

3

2
(1,−1, 1,−1) = (3,−1, 1,−1).

The distance between p and H is the length of the vector

~y1 = ~y − ~y0 = (3, 1, 5, 1)− (3,−1, 1,−1) = (0, 2, 4, 2) = 2(0, 1, 2, 1).

The distance is
2
√

1 + 4 + 1 = 2
√

6.
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There are general results along these lines whose proofs are simple
generalisations of the arguments above:

Definition-Theorem 25.3. If W is a subspace of Rn and ~y is a vector
in Rn then we may uniquely decompose

~y = ~y0 + ~y1

where ~y0 ∈ W and ~y1 is orthogonal to W . ~y0 = projW ~y is called the
orthogonal projection of ~y onto W .

If
{ ~u1, ~u2, . . . , ~uk }

is an orthogonal basis of W then

~y0 = projW ~y =
~y · ~u1
~u1 · ~u1

~u1 +
~y · ~u2
~u2 · ~u2

~u2 + · · ·+ ~y · ~un
~un · ~un

~un.

Theorem 25.4. If W is a subspace of Rn and ~y is a vector in Rn then
the orthogonal projection ~y0 = projW ~y is the closest point in W to ~y,
that is,

‖~y − ~y0‖ ≤ ‖~y − ~w‖ for all ~w ∈ W,
with equality if and only if ~w = ~y0.
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