
24. This and that

Recall the Fibonacci sequence

f0 = 0, 1, 1, 2, 3, 5, 8, 13, · · · , fn, · · · ,

satisfies the recurrence

fn = fn−2 + fn−1.

If

~vn =

(
fn−1
fn

)
.

then

~vn+1 =

(
fn
fn+1

)
=

(
fn

fn−1 + fn

)
=

(
0 1
1 1

)(
fn−1
fn

)
.

Thus if

A =

(
0 1
1 1

)
and ~v1 =

(
0
1

)
then ~vn = An−1~v1.

Let’s diagonalise A:

A− λI2 =

(
−λ 1
1 1− λ

)
.

The characteristic equation is

−λ(1− λ)− 1 = 0.

The quadractic polynomial on the LHS is the characteristic polynomial.
Expanding, we get

λ2 − λ− 1 = 0.

Using the quadratic formula gives

λ =
1±
√

5

2
.

Note that the golden ratio:

1 +
√

5

2
.

turns up as one of the roots. If we plug in λ1 = (1 +
√

5)/2 then we
get (

−1+
√
5

2
1

1 1−
√
5

2

)
.
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Let’s apply Gaussian elimination:(
−1+

√
5

2
1

1 1−
√
5

2

)
→

(
1 1−

√
5

2

1 1−
√
5

2

)
→
(

1 1−
√
5

2
0 0

)
,

so that this is indeed a matrix of rank one. The kernel is spanned by

~v1 = (1,
1 +
√

5

2
).

This is an eigenvector with eigenvalue λ1. Similarly

~v2 = (1,
1−
√

5

2
).

is an eigenvector with eigenvalue

λ2 =
1−
√

5

2
.

Thus A = PDP−1, where

D =

(
1+
√
5

2
0

0 1−
√
5

2

)
and

P =

(
1 1

1+
√
5

2
1−
√
5

2

)
.

It follows that

P−1 = − 1√
5

(
1−
√
5

2
−1

−1+
√
5

2
1

)
One can check the equality A = PDP−1. Now

Anv1 = PDnP−1v1

=
1

−
√

5

(
1 1

1+
√
5

2
1−
√
5

2

)(1+
√
5

2

)n
0

0
(

1−
√
5

2

)n
( 1−

√
5

2
−1

−1+
√
5

2
1

)(
0
1

)

=
1√
5

(
1 1

1+
√
5

2
1−
√
5

2

)(1+
√
5

2

)n
0

0
(

1−
√
5

2

)n
( 1
−1

)

=
1√
5

(
1 1

1+
√
5

2
1−
√
5

2

) (
1+
√
5

2

)n
−
(

1−
√
5

2

)n


=
1√
5

((
1+
√
5

2

)n
−
(

1−
√
5

2

)n
?

)
.
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It follows that

fn =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
.

Now

−1 <
1−
√

5

2
< 0 whilst

1 +
√

5

2
> 1.

If n is large this means (
1−
√

5

2

)n

≈ 0.

and the other term is the one that matters. But fn is an integer. It
follows that fn is the closest integer to(

1√
5

)(
1 +
√

5

2

)n

.

It is interesting to check this for some values of n. Put in n = 5 and
we get

≈ 4.956,

which is very close to the real answer, namely 5. Put in n = 6 and we
get

≈ 8.025,

which is even closer to the real answer, namely 8. Put in n = 100 (well
into matlab, or your favourite computer algebra system) we get

3.542248× 1020.

Actually this is nowhere near the real answer. Matlab (or YFCAS)
has a function to compute f100 directly (and more importantly cor-
rectly).

Here is what is going on. To compute f100 accurately using matri-
ces, which involves real numbers, we need twenty significant figures
of accuracy. Matlab, let’s say, routinely uses ten significant figures of
accuracy, so only the first ten digits are correct.

On the other hand, the routine which matlab uses to compute the
Fibonacci numbers, does the stupid thing and just keeps computing
each term in the sequence until it gets to a hundred. The advantage of
this is that the computer knows exactly how much accuracy it needs
as it computes; if it has an integer like 1450 it needs four significant
figures but if it has a number like 123456 it needs six, and so on.
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