
21. The dot product

Definition 21.1. The dot product of two vectors ~u and ~v in Rn is the
sum

~u · ~v = u1v1 + u2v2 + · · ·+ unvn.

Example 21.2. The dot product of ~u = (1, 1) and ~v = (2,−1) is

~u · ~v = 1 · 2 + 1 · −1 = 1.

The dot product of ~u = (1, 2, 3) and ~v = (2,−1, 1) is

~u · ~v = 1 · 2 + 2 · −1 + 3 · 1 = 3.

Note that when we compute the product of two matrices A and B in
essence we are computing an array of dot products. In particular the
dot product can be identified with the matrix product ~uT · ~v.

Definition 21.3. The length of a vector ~v ∈ Rn is the square root of
the dot product of ~v with itself:

‖~v‖ =
√
~v.~v =

√
v21 + v22 + · · ·+ v2n.

Note that

‖(x, y)‖ =
√
x2 + y2 and ‖(x, y, z)‖ =

√
x2 + y2 + z2

the usual formula for the length, using Pythagoras.

Example 21.4. What is the length of the vector ~v = (1,−2, 2)?

~v · ~v = 12 + 22 + 22 = 9.

So the length is 3.
Note that the vector

û =
1

3
~v = (1/3,−2/3, 2/3)

is a vector of unit length with the same direction as ~v.

Definition 21.5. Let p and q be two points in Rn.
The distance between P and Q is the length of the vector

~v = q − p.

Let p = (1, 1, 1) and q = (2,−1, 3). Then

~v = (2,−1, 3)− (1, 1, 1) = (1,−2, 1).

So the distance between p and q is 3, the length of ~v.

Definition 21.6. We say two vectors are orthogonal if ~u · ~v = 0.
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The standard basis vectors ~e1, ~e2, . . . , ~en of Rn are orthogonal.

Example 21.7. Are the vectors ~u = (1, 1,−2) and ~v = (2, 0, 1) orthog-
onal?

~u · ~v = (1, 1,−2) · (2, 0, 1) = 2 + 0− 2 = 0,

so that ~u and ~v are orthogonal.

Definition-Theorem 21.8. Let W ⊂ Rn be a linear subspace. The
orthogonal complement of W is

W⊥ = { v ∈ Rn | v · w = 0 },
the set of all vectors which are orthogonal to every vector in W .

Then W⊥ is a linear subspace of Rn.

For example, suppose we start with a plane H in R3 through the
origin. Then there is a line L in R3 through the origin which is the
orthogonal complement of H:

L = H⊥.

The line L is spanned by a vector which is orthogonal to every vector
in H. Note that the relation between L and H is reciprocal, H is the
orthogonal complement of L:

H = L⊥.

Theorem 21.9. Let A be an m× n matrix.
The orthogonal complement of the row space of A is the null space

of A and the orthogonal complement of the column space of A is the
null space of AT :

(RowA)⊥ = NulA and (ColA)⊥ = NulAT .

Proof. The rows of A correspond to equations. If a row is given by the
vector

~a = (a1, a2, . . . , an)

then the corresponding equation is

a1x1 + a2x2 + · · ·+ anxn = 0.

~x is in the null space if and only if it satisfies every equation.
But ~x satisfies the equation

a1x1 + a2x2 + · · ·+ anxn = 0

if and only if the dot product ~a · ~x = 0.
Thus ~x is in the null space if and only if it is in the orthogonal

complement of the row space.
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Now consider the matrix AT . By what we just proved the null space
of AT is the orthogonal complement of the row space of AT . But the
row space of AT is nothing but the column space of A. �
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