
20. Diagonalisation

Definition 20.1. Let A and B be two square n× n matrices. We say
that A and B are similar if there is an invertible square n× n matrix
P such that A = PBP−1.

We say that A is diagonalisable if A is similar to a diagonal matrix
D.

Suppose that

A = PBP−1.

Then

A2 = A · A
= (PBP−1)(PBP−1)

= PB(P−1P )BP−1

= PBBP−1

= PB2P−1.

More generally we have:

Lemma 20.2. Suppose that A and B are two n × n square matrices
and that P is an invertible matrix such that

A = PBP−1.

Then

An = PBnP−1.

Proof. We prove this by induction on n. It is true for n = 1 by as-
sumption. Suppose that

An = PBnP−1,

for some n > 0. Then

An+1 = A · An

= (PBP−1)(PBnP−1)

= PB(P−1P )BnP−1

= PBBnP−1

= PBn+1P−1

as required. Thus the result holds by induction on n. �

(20.2) gives us a practical way to compute the powers of a diagonal-
isable matrix A.
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Theorem 20.3. Let A be an n× n matrix.
Then A is diagonalisable if and only if we can find a basis ~v1, ~v2, . . . , ~vn

of eigenvectors for Rn. In this case,

A = PDP−1,

where P is the matrix whose columns are the eigenvectors ~v1, ~v2, . . . , ~vn
and D is the diagonal matrix whose diagonal entries are the correspond-
ing eigenvalues λ1, λ2, . . . , λn.

Proof. Suppose thatA = PDP−1, where the columns of P are ~v1, ~v2, . . . , ~vn
and D is a diagonal matrix with entries λ1, λ2, . . . , λn. We have

A~vi = (PDP−1)(P~ei)

= (PD)(P−1P )~ei

= P (D~ei)

= P (λi~ei)

= λi(P~ei)

= λi~vi.

Therefore ~vi is an eigenvector with eigenvalue λi. The vectors ~v1, ~v2, . . . , ~vn
are a basis of Rn as P is invertible.

Now for the other direction. Suppose that ~v1, ~v2, . . . , ~vn are a basis
of eigenvectors. Let P be the matrix whose columns are the vectors
~v1, ~v2, . . . , ~vn. Then P is an invertible matrix. Let D = P−1AP . Then

D~ei = (P−1AP )~ei

= P−1A~vi

= P−1λi~vi

= λiP
−1~vi

= λi~ei.

So D is the matrix whose ith row is the vector λi~ei. But then D is a
diagonal matrix with entries λ1, λ2, . . . , λn on the main diagonal. We
have

D = P−1AP.

Multiplying both sides by P on the left, we get

PD = AP.

Finally multiplying both sides on the right by P−1 we get

A = PDP−1. �

Let’s illustrate (20.3) by going back to the examples in §19.
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Example 20.4. Is it possible to diagonalise

A =

(
−8 5
−10 7

)
?

If the answer is yes, then diagonalise A.

We already saw that

~v1 = (1, 2)

is an eigenvector with eigenvalue 2, and

~v2 = (1, 1)

is an eigenvector with eigenvalue −3.
~v1 and ~v2 are independent (either by inspection or because 2 6= −3).

Thus A is diagonalisable.
Let

P =

(
1 1
2 1

)
the matrix whose columns are the eigenvectors. Then

P−1 = −1

(
1 −1
−2 1

)
=

(
−1 1
2 −1

)
.

Let

D =

(
2 0
0 −3

)
the diagonal matrix whose entries on the diagonal are the eigenvalues.
Let’s compute PDP−1:(

1 1
2 1

)(
2 0
0 −3

)(
−1 1
2 −1

)
=

(
1 1
2 1

)(
−2 2
−6 3

)
=

(
−8 5
−10 7

)
,

as expected.
Now we can compute any power of A easily:

An = PDnP−1.

We compute(
−8 5
−10 7

)n

=

(
1 1
2 1

)(
2n 0
0 (−3)n

)(
−1 1
2 −1

)
=

(
1 1
2 1

)(
−2n 2n

2(−3)n −(−3)n

)
=

(
−2n + 2(−3)n 2n − (−3)n

−2n+1 + 2(−3)n 2n+1 − (−3)n

)
.
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Example 20.5. Is it possible to diagonalise

A =

 1 2 1
6 −1 0
−1 −2 −1

?

If the answer is yes, then diagonalise A.

We already saw that

~v1 = (−1,−6, 13)

is an eigenvector with eigenvalue 0,

~v2 = (−1, 2, 1)

is an eigenvector with eigenvalue −4, and

~v3 = (−2,−3, 2)

is an eigenvector with eigenvalue 3.
~v1, ~v2 and ~v3 are independent, since their eigenvalues 0, −4 and 3

are distinct. Therefore they are a basis and so A is diagonalisable.
Let

P =

−1 −1 −2
−6 2 −3
13 1 2


the matrix whose columns are the eigenvectors. Then, with the aid of
a computer,

P−1 =
1

84

 7 0 7
−27 24 9
−32 −12 −8

 .

Let

D =

0 0 0
0 −4 0
0 0 3


the diagonal matrix whose entries on the diagonal are the eigenvalues.
Now we can compute any power of A easily:

An = PDnP−1.

We compute

1

84

−1 −1 −2
−6 2 −3
13 1 2

0 0 0
0 (−4)n 0
0 0 3n

 7 0 7
−27 24 9
−32 −12 −8

 .
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Example 20.6. Is it possible to diagonalise

A =

(
1 1
0 1

)
If the answer is yes, then diagonalise A.

We compute the eigenvalues of A:∣∣∣∣1− λ 1
0 1− λ

∣∣∣∣ = (1− λ)2.

So the only eigenvalue is λ = 1. We want to compute the null space of
A− I2: (

0 1
0 0

)
.

y is a basic variable and x is a free variable. y = 0. Thus ~e1 is an
eigenvector with eigenvalue 1. A is not diagonalisable, we cannot find
a basis of eigenvalues.

Example 20.7. Is it possible to diagonalise

A =

−1 0 1
3 0 −3
1 0 −1

 .

If the answer is yes, then diagonalise A.

The characteristic polynomial is:∣∣∣∣∣∣
−1− λ 0 1

3 −λ −3
1 0 −1− λ

∣∣∣∣∣∣ = −(1 + λ)

∣∣∣∣−λ −3
0 −1− λ

∣∣∣∣+

∣∣∣∣3 −λ
1 0

∣∣∣∣
= −(1 + λ)2λ+ λ

= −λ2(λ+ 2).

Thus the eigenvalues are 0 and −2.
We want to calculate the nullspace of A. We apply Gaussian elimi-

nation: −1 0 1
3 0 −3
1 0 −1

→
1 0 −1

3 0 −3
1 0 −1

→
1 0 −1

0 0 0
0 0 0

 .

x is a basic variable, y and z are free variables.

x− z = 0 so that x = z.

The general solution is

(x, y, z) = (z, y, z) = y(0, 1, 0) + z(1, 0, 1).
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A basis for the nullspace is given by (0, 1, 0) and (1, 0, 1).

~v1 = (0, 1, 0) and ~v2 = (1, 0, 1)

are independent eigenvectors with eigenvalue 0.
We want to calculate the nullspace of A+ 2I3.

A+ 2I3 =

1 0 1
3 2 −3
1 0 1

 .

We apply Gaussian elimination:1 0 1
3 2 −3
1 0 1

→
1 0 1

0 2 −6
0 0 0

→
1 0 −1

0 1 −3
0 0 0

 .

x and y are basic variables, z is a free variable.

y − 3z = 0 so that y = 3z.

Therefore

x+ z = 0 so that x = −z.
The general solution is

(x, y, z) = (−z, 3z, z) = z(−1, 3, 1).

~v3 = (−1, 3, 1)

is an eigenvector with eigenvalue −2. The vectors ~v1, ~v2 and ~v3 are
independent, thus A is diagonalisable.

Let

P =

0 1 −1
1 0 3
0 1 1


the matrix whose columns are the eigenvectors. Then, with the aid of
a computer,

P−1 =
1

2

 3 1 −3
1 0 1
−1 0 1

 .

Let

D =

0 0 0
0 0 0
0 0 −2


the diagonal matrix whose entries on the diagonal are the eigenvalues.
Now we can compute any power of A easily:

An = PDnP−1.
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We compute

1

2

0 1 −1
1 0 3
0 1 1

0 0 0
0 0 0
0 0 (−2)n

 3 1 −3
1 0 1
−1 0 1

 .
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