20. DIAGONALISATION

Definition 20.1. Let A and B be two square n x n matrices. We say
that A and B are similar if there is an invertible square n X n matrix
P such that A= PBP1.

We say that A is diagonalisable if A is similar to a diagonal matriz

D.

Suppose that
A=PBP
Then
A=A A
= (PBP Y (PBP™)
= PB(P'P)BP!
= PBBP!
= PB*P .
More generally we have:

Lemma 20.2. Suppose that A and B are two n X n square matrices
and that P is an invertible matriz such that

A= PBP.

Then

A" = PB"P1.
Proof. We prove this by induction on n. It is true for n = 1 by as-
sumption. Suppose that

A" = PB"P~ !,
for some n > 0. Then

ATl = 4. A"

= (PBP")(PB"PY)

= PB(P'P)B"P!

= PBB"P!

_ pprtip-!
as required. Thus the result holds by induction on n. 0

(20.2) gives us a practical way to compute the powers of a diagonal-

isable matrix A.
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Theorem 20.3. Let A be an n X n matriz.

Then A is diagonalisable if and only if we can find a basis U1, Vs, . . ., Uy
of eigenvectors for R™. In this case,
A=PDP™,
where P is the matrix whose columns are the eigenvectors Uy, Vs, . . ., Uy

and D 1is the diagonal matriz whose diagonal entries are the correspond-
ing eigenvalues Ay, Aa, ..., Ay

Proof. Suppose that A = PDP~!, where the columns of P are ¥}, ¥, . . . , Uy
and D is a diagonal matrix with entries A;, Ao, ..., \,. We have
At; = (PDP™)(Pg;)

= (PD)(P~'P)g;

— P(D&)

= P(\é)

= \i(Pé))

= A,
Therefore vj; is an eigenvector with eigenvalue A\;. The vectors v, v, . . ., U,
are a basis of R™ as P is invertible.

Now for the other direction. Suppose that v, vs,..., 7, are a basis

of eigenvectors. Let P be the matrix whose columns are the vectors
U1, Vs, ...,0,. Then P is an invertible matrix. Let D = P~*AP. Then

Dé; = (P~ AP)é;

= P71 Ay,
= P\,
= NPl
= \é.
So D is the matrix whose ith row is the vector \;e;. But then D is a
diagonal matrix with entries Aj, Ao, ..., A\, on the main diagonal. We
have
D =P AP
Multiplying both sides by P on the left, we get
PD = AP.
Finally multiplying both sides on the right by P~! we get
A=PDP!. O

Let’s illustrate (20.3]) by going back to the examples in §19.
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Example 20.4. Is it possible to diagonalise

-8 5
- 2
4 (—10 7) ’
If the answer is yes, then diagonalise A.

We already saw that

v = (1,2)
is an eigenvector with eigenvalue 2, and
Uy = (1,1)

is an eigenvector with eigenvalue —3.
01 and v are independent (either by inspection or because 2 # —3).
Thus A is diagonalisable.
11
r=(a )

Let
the matrix whose columns are the eigenvectors. Then

(G000 )

Let

the diagonal matrix whose entries on the diagonal are the eigenvalues.
Let’s compute PDP~!:

1 1\ (2 O\/=1 1Y\ (1 1\(-2 2\ (-8 5
2 1)\0 =3 2 —-1) \2 1)\-6 3) \-10 7)°
as expected.
Now we can compute any power of A easily:
A" = PD"P~

We compute
(02 -GHGE GG L)
- (2 1) (B o)

B ( —2" 4+ 2(=3)" 2" — (=3)" )
o\ —2r g 2(=3)n 2t — (=3)n )
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Example 20.5. Is it possible to diagonalise

1 2 1
A= 6 -1 0 |7
-1 -2 -1

If the answer is yes, then diagonalise A.
We already saw that
v = (—1,-6,13)
is an eigenvector with eigenvalue 0,
Uy = (—1,2,1)
is an eigenvector with eigenvalue —4, and
U3 = (—2,-3,2)

is an eigenvector with eigenvalue 3.
U1, Uo and v are independent, since their eigenvalues 0, —4 and 3
are distinct. Therefore they are a basis and so A is diagonalisable.
Let

-1 -1 -2
P=|-6 2 -3
13 1 2

the matrix whose columns are the eigenvectors. Then, with the aid of
a computer,

] 7 0o 7
Pl=—1|-271 24 9
84 \ 30 _12 _3g
Let
0 0 0
D=0 -4 0
0 0 3

the diagonal matrix whose entries on the diagonal are the eigenvalues.
Now we can compute any power of A easily:

A" = pD P~
We compute
Y e A W AU 0 7 0 7
< —6 2 =3]10 (—4)" 0 —27 24 9
84\13 1 2/ \o o 3/ \_32 —12 -3



Example 20.6. Is it possible to diagonalise

11
=0 )
If the answer is yes, then diagonalise A.

We compute the eigenvalues of A:

1—A 1
0 1—-A

So the only eigenvalue is A = 1. We want to compute the null space of

A—IQZ
01
(0 o)

y is a basic variable and x is a free variable. y = 0. Thus € is an
eigenvector with eigenvalue 1. A is not diagonalisable, we cannot find
a basis of eigenvalues.

‘:(1—/\)2.

Example 20.7. Is it possible to diagonalise

-1 0 1
A= 3 0 =3
1 0 -1

If the answer is yes, then diagonalise A.

The characteristic polynomial is:

~1-X 0 1
3 -\ -3 :—(1+/\)’_0>‘ _iA‘+'? _OA‘
1 0 —1-2X\
= —(1+A)*A+ A
= -2\ +2).

Thus the eigenvalues are 0 and —2.
We want to calculate the nullspace of A. We apply Gaussian elimi-
nation:

-1 0 1 1 0 -1 10 -1
3 0 3]—=(30 -3]—=100 0
1 0 —1 10 -1 00 O
x is a basic variable, y and z are free variables.
r—2z=0 so that x = z.

The general solution is

(x,y,2) = (2,y,2) = y(0,1,0) + 2(1,0, 1).
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A basis for the nullspace is given by (0,1,0) and (1,0, 1).
v = (0,1,0) and Uy = (1,0,1)

are independent eigenvectors with eigenvalue 0.
We want to calculate the nullspace of A 4 213.

1 0 1
A+2I;3=13 2 -3
10 1
We apply Gaussian elimination:
1 0 1 1 0 1 1 0 -1
32 3]—-(02 —6]—=(01 =3
1 0 1 00 O 0 0 O

x and y are basic variables, z is a free variable.
y—32=0 so that y = 3z.
Therefore
r+2=0 so that r=—z.
The general solution is
(x,y,2) = (—2,32,2) = 2(—1,3,1).
U3 = (—1,3,1)
is an eigenvector with eigenvalue —2. The vectors v, U, and v3 are
independent, thus A is diagonalisable.
Let
01 —1
P=110 3
01 1

the matrix whose columns are the eigenvectors. Then, with the aid of
a computer,

L (3 1 -3
Pt==[1 0 1
2\21 0 1
Let
00 0
D=0 0 0
00 —2

the diagonal matrix whose entries on the diagonal are the eigenvalues.
Now we can compute any power of A easily:

A" = pD P~
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We compute

— O

o — O

— |
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