
18. Powers of matrices

Let’s start with three related problems.
Consider the sequence

f0 = 0, 1, 1, 2, 3, 5, 8, 13, · · · , fn, · · · .
This sequence satisfies the recurrence

fn = fn−2 + fn−1.

It is called the Fibonacci sequence. As a motivating question, what is
the nth term? That is, can we find a closed form expression for fn?

For the second problem, suppose we have a physical system, where we
keep iterating some action. What is the long term qualitative behaviour
of the system?

Here is a seemingly unrelated third problem. Consider the matrix

A =

(
1 2
3 4

)
.

What is A100? Even computing small powers of A looks like a pain.
A much easier problem is to compute powers of a diagonal matrix

D =

(
1 0
0 2

)
.

Then

D2 =

(
1 0
0 4

)
and D3 =

(
1 0
0 8

)
.

In fact it is not hard to see that

Dn =

(
1 0
0 2n

)
.

The idea is to reduce computing powers of A to powers of a diagonal
matrix, which is easy.

To see how to do this, let us go back to the problem of computing the
nth term fn of the Fibonnaci sequence. To compute the nth term, we
need the previous two terms. This suggests we should create a vector

~vn =

(
fn−1

fn

)
.

We then have

~vn+1 =

(
fn
fn+1

)
=

(
fn

fn−1 + fn

)
.

The key point is that the last vector is just A~vn, where

A =

(
0 1
1 1

)
.
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In other words ~vn = An−1~v1, where

~v1 =

(
0
1

)
.

Now if we have a diagonal matrix and we apply it to a vector, what
happens? If we apply the diagonal matrix

D =

(
1 0
0 1

2

)
.

to ~v = (1, 1), we get (
1
1
2

)
.

In general we have

Dn~v1 =

(
1
1
2n

)
.

The key point is that if n is large, then 1/2n is negligible in comparison
with 1, so that Dn~v1 is very close to

~e1 =

(
1
0

)
.

Note that D~e1 = ~e1. On the other hand

D~e2 =

(
0
1
2

)
=

1

2
~e2.

In fact if D is a diagonal matrix, with entries λ1, λ2, . . . , λn on the main
diagonal, then we have D~ei = λi~ei. This motivates:

Definition 18.1. Let A be an n× n matrix. We say that ~v 6= 0 is an
eigenvector with eigenvalue λ if A~v = λ~v.

So, a diagonal matrix D, with diagonal entries λ1, λ2, . . . , λn, has
eigenvectors ~e1, ~e2, . . . , ~en, with eigenvalues λ1, λ2, . . . , λn. Note that
the eigenvectors are a basis for Rn.

One can push this a little bit further. We say that a square matrix
is upper triangular if every entry below the main diagonal is zero. If
A is upper triangular then the eigenvalues of A are the entries on the
main diagonal.

Example 18.2. The eigenvalues of−2 10 1
0 3 2
0 0 7


are −2, 3 and 7.
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There are couple of other cases when one can figure out directly the
eigenvalues and eigenvectors. Consider the linear function

f : R2 −→ R2 given by (x, y) −→ (x,−y).

We are looking for invariant lines. We have already seen this function.
It represents reflection in the x-axis. So the whole x-axis is fixed. Thus
~e1 = (1, 0) is an eigenvector with eigenvalue 1. The y-axis is fixed but
it is also flipped. ~e2 = (1, 0) is an eigenvector with eigenvalue −1.

What about reflection in another line? If the line is spanned by the
vector ~v then ~v is an eigenvector with eigenvalue 1. If ~w is a vector
which makes a right angle to ~v then ~w is flipped. It is an eigenvector
with eigenvalue −1.

For example, consider reflection in the line y = x.

f : R2 −→ R2 given by (x, y) −→ (y, x).

Then (1, 1) is an eigenvector with eigenvalue 1 and (1,−1) is an eigen-
vector with eigenvalue −1.

What about rotation? If we rotate around the origin in R2 then most
of the time there are no eigenvectors, unless we rotate through exactly
π. In this case any vector is an eigenvector with eigenvalue −1.

If we perform a rotation in space then there is always an axis of rota-
tion. Any vector which spans the axis is an eigenvector with eigenvalue
1.

In all these cases eigenvectors with different eigenvalues are indepen-
dent and eigenvectors with the same eigenvalue are a linear subspace.

Theorem 18.3. Let A be an n × n matrix and let ~v1, ~v2, . . . , ~vk be
eigenvectors of A with distinct eigenvalues λ1, λ2, . . . , λk.

Then ~v1, ~v2, . . . , ~vk are independent. In particular if k = n then
~v1, ~v2, . . . , ~vn are a basis of eigenvectors for Rn.

Proof. Suppose not. Suppose that ~v1, ~v2, . . . , ~vk are dependent. We will
derive a contradiction. By assumption there are scalars r1, r2, . . . , rk,
not all zero, such that

~0 = r1~v1 + r2~v2 + · · ·+ rk~vk.

We suppose that k is minimal with this property. In particular we may
assume that ri 6= 0 for all i. Clearly k > 1. We apply A to both sides
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of the equation above. We get

~0 = A ·~0
= A(r1~v1 + r2~v2 + · · ·+ rk~vk)

= r1A~v1 + r2A~v2 + · · ·+ rkA~vk

= r1λ1~v1 + r2λ2~v2 + · · ·+ rkλk~vk.

Take the first equation and multiply by λk. We get

~0 = r1λk~v1 + r2λk~v2 + · · ·+ rkλk~vk

~0 = r1λ1~v1 + r2λ2~v2 + · · ·+ rkλk~vk.

We subtract the second equation from the first equation:

~0 = r1(λk − λ1)~v1 + r2(λk − λ2)~v2 + · · ·+ rk−1(λk − λk−1)~vk−1.

Now si = ri(λk − λi) 6= 0, since the eigenvalues are distinct. But
then we found a linear dependence involving fewer eigenvectors. This
contradicts our choice of k. The only possibility is that the eigenvectors
are independent to start with. �

How does one compute the eigenvalues and eigenvectors? Well if λ
is an eigenvalue then

A~v = λ~v.

Note that
λ~v = λIn~v.

Rearranging we get
(A− λIn)~v = ~0.

So an eigenvector ~v of A with eigenvalue λ is the same as an element
of the nullspace of B = A − λIn. The set of all eigenvectors with
eigenvalue λ,

{~v ∈ Rn |A~v = λ~v }
is a linear subspace of Rn, called an eigenspace.
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