
13. Dimension of a linear subspace

The most interesting thing is to figure out the dimension of a linear
subspace. The definition is just the same, with H replacing Rm:

Definition 13.1. The vectors ~v1, ~v2, . . . , ~vn ∈ H ⊂ Rm are a basis of
H if ~v1, ~v2, . . . , ~vn are both independent and ~v1, ~v2, . . . , ~vn span H.

The dimension of H is n, the size of a basis.

Example 13.2. Let’s take a line in R3, for example the line

(x, y, z) = λ(1, 1, 1).

This is the span of ~v1 = (1, 1, 1). In particular it is a linear subspace.
The vector ~v1 is independent. Thus {~v1} is a basis and so the line has
dimension one.

Suppose we take ~v1 = (1, 1, 1) and ~v2 = (2, 2, 2). These vectors
together span the line but they are not independent;

−2~v1 + ~v2 = ~0.

They are not a basis.

Example 13.3. Let’s take a plane in R3, for example the plane

x+ 2y + 3z = 0.

This is a linear subspace, the nullspace of

A =
(
1 2 3

)
We want to find a basis of the nullspace. x is a basic variable and y

and z are free variables. We solve for x in terms of y and z:

x+ 2y + 3z = 0 so that z = −2y − 3z.

Parametrically,

(x, y, z) = (−2y − 3z, y, z) = y(−2, 1, 0) + z(−3, 0, 1).

Clearly the vectors ~v1 = (−2, 1, 0) and ~v2 = (−3, 0, 1) span the solution
set H. ~v1 and ~v2 are not parallel, so that they are independent. Thus
{~v1, ~v2} is a basis and the plane H has dimension two.

Theorem 13.4. If H ⊂ Rm is a linear subspace then the dimension of
H is at most m.

Proof. Suppose that ~v1, ~v2, . . . , ~vp is a basis of H. Then ~v1, ~v2, . . . , ~vp
are independent vectors in Rm. It follows that p ≤ m. But p is the
dimension of H. �
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How do we find a basis for the column space of a matrix? The
column space of a matrix is spanned by the columns of A. So the
columns ~a1,~a2, . . . ,~an span the column space. The only problem is
that they might not be independent. We need to discard some of the
columns. Which columns are redundant?

Lemma 13.5. If ~vp is a linear combination of ~v1, ~v2, . . . , ~vp−1 then
~v1, ~v2, . . . , ~vp−1 spans the same space as ~v1, ~v2, . . . , ~vp.

Proof. Clearly, anything which is a linear combination of ~v1, ~v2, . . . , ~vp−1

is a linear combination of ~v1, ~v2, . . . , ~vp.
Suppose that ~v is a linear combination of ~v1, ~v2, . . . , ~vp. We have to

show that ~v is a linear combination of ~v1, ~v2, . . . , ~vp−1. By assumption
~vp is a linear combination of ~v1, ~v2, . . . , ~vp−1 so we may find scalars
a1, a2, . . . , ap−1 such that

~vp = a1~v1 + a2~v2 + · · ·+ ap−1~vp−1.

As ~v is a linear combination of ~v1, ~v2, . . . , ~vp we may find scalars x1, x2, . . . , xp
such that

~v = x1~v1 + x2~v2 + · · ·+ xp~vp.

Then

~v = x1~v1 + x2~v2 + · · ·+ xp~vp

= x1~v1 + x2~v2 + · · ·+ xp(a1~v1 + a2~v2 + · · ·+ ap−1~vp−1)

= (x1 + xpa1)~v1 + (x2 + xpa2)~v2 + · · ·+ (xp−1 + xpap−1)~vp−1.

Thus ~v is a linear combination of ~v1, ~v2, . . . , ~vp−1. �

Example 13.6. Find a basis for the space spanned by the vectors

~v1 =


1
0
−2
3

 ~v2 =


0
1
2
3

 ~v3 =


2
−2
−8
0

 ~v4 =


2
−1
10
3

 ~v5 =


3
−1
−6
9

 .

This is the same as the column space of the matrix:

A =


1 0 2 2 3
0 1 −2 −1 −1
−2 2 −8 10 −6
3 3 0 3 9

 .

The trick is to apply Gaussian elimination.
1 0 2 2 3
0 1 −2 −1 −1
−2 2 −8 10 −6
3 3 0 3 9

→


1 0 2 2 3
0 1 −2 −1 −1
0 2 −4 14 0
0 3 −6 −3 0

→


1 0 2 2 3
0 1 −2 −1 −1
0 0 0 16 2
0 0 0 0 3


2



→


1 0 2 2 3
0 1 −2 −1 −1
0 0 0 1 1/8
0 0 0 0 1


The key point is that the elementary row operations preserve the

relations between the columns. Let’s focus on the columns of A which
have pivots, that is, the first, second, fourth and fifth columns. If we
make a matrix with just those columns,

1 0 2 3
0 1 −1 −1
0 0 1 1/8
0 0 0 1


then we see that the first, second, fourth and fifth columns are inde-
pendent.

Now look at the third column. It is linear combination of the first
and second columns. The relevant part of the matrix is the 2×3 uppper
left corner (a priori we should focus on the left 4 × 3 matrix, but we
can forget the last two rows, since they are all zeroes):(

1 0 2
0 1 −2

)
Clearly the third column is twice the first column plus minus twice

the second column. Thus

~v1 =


1
0
−2
3

 ~v2 =


0
1
2
3

 ~v4 =


2
−1
10
3

 ~v5 =


3
−1
−6
9


are a basis.

2~v1 − 2~v2 = (1, 0,−2, 3) + (0, 1, 2, 3) = (2, 2,−8, 0) = ~v3,

as expected. The span of ~v1, ~v2, ~v3, ~v4 and ~v5 has dimension four.
In general the dimension of the column space of a matrix A is the

number of pivots; a basis is given by the pivot columns and the other
column vectors are a linear combination of those.
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