
10. Vector subspaces

The solution to a homogeneous equation A~x = ~0 in R3 is one of

• The origin.
• A line through the origin.
• A plane through the origin.
• The whole of R3.

These are all examples of linear subspaces.

Definition 10.1. Let H be a subset of Rn.
H is called a linear subspace if

(1) ~0 ∈ H.
(2) H is closed under addition: If ~u and ~v ∈ H then ~u+ ~v ∈ H.
(3) H is closed under scalar multiplication: If ~u and λ is a scalar

then λ~u ∈ H.

GeometricallyH is closed under scalar multiplication if and only ifH
is a union of lines through the origin. H is then closed under addition
if and only if it contains every plane containing ever pair of lines.

Example 10.2. Let H = {~0}. Then H is a linear subspace. Indeed,
~0 ∈ H. ~0 +~0 = ~0 ∈ H. Similarly λ~0 = ~0.

Example 10.3. Let H = Rn. Then H is a linear subspace. Indeed,
~0 ∈ H. H is obviously closed under addition and scalar multiplication.

Now consider lines in R3.

Example 10.4. Let H be the x-axis. Then H is a linear subspace.
Indeed, ~0 ∈ H. If ~u and ~v belong to H then ~u and ~v are multiples of
(1, 0, 0) and the sum is a multiple of (1, 0, 0). Similarly if λ is a scalar
then λ~u is a multiple of (1, 0, 0).

Example 10.5. Let H be a line in R3 through the origin. Then H is
a linear subspace. Indeed, ~0 ∈ H. The elements of H are all multiples
of the same vector ~w. If ~u and ~v are in H then ~u and ~v are multiples
of ~w. The sum is a multiple of ~w. Thus ~u+ ~v ∈ H. Similarly if λ is a
scalar then λ~u is a multiple of ~w.

It is interesting to see what happens when we don’t have a linear
subspace:

Example 10.6. Let

H = { (x, y) | y = x2 } ⊂ R2,
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a parabola, the graph of y = x2. This does contain the origin. Consider
the vector (1, 1) ∈ H and the vector (2, 4) ∈ H. The sum is

(1, 1) + (2, 4) = (3, 5) /∈ H.
Similarly (1, 1) ∈ H but 2(1, 1) = (2, 2) /∈ H.
H is neither closed under addition nor under scalar multiplication.

H is not a linear subspace.

Theorem 10.7. Let v1, v2, . . . , vp be vectors in Rn and let

H = span{ ~u | ~u is a linear combination of v1, v2, . . . , vp }
be the span.

Then H is a linear subspace of Rn.

Proof. ~0 ∈ H, since ~0 is a linear combination of v1, v2, . . . , vp (use zero
weights). If ~u and ~v belong to H then ~u and ~v are linear combinations
of ~v1, ~v2, . . . , ~vp. Suppose that

~u = x1~v1 + x2~x2 + · · ·+ xp~xp and ~v = y1~v1 + y2~x2 + · · ·+ yp~xp,

for scalars x1, x2, . . . , xp and y1, y2, . . . , yp. Then

~u+ ~v = (x1 + y1)~v1 + (x2 + y2)~x2 + . . . (xp + yp)~xp

is a linear combination of ~v1, ~v2, . . . , ~vp so that ~u + ~v ∈ H. So H is
closed under addition. If λ is a scalar then

λ~u = (λx1)~v1 + (λx2)~x2 + . . . (λxp)~xp.

So H is closed under scalar multiplication. Thus H is a linear subspace.
�

If we are given a matrix A the span of the columns ~a1,~a2, . . . ,~an of
A is called the column space of A, col(A).

There is one other way to produce lots of linear subspaces:

Definition-Theorem 10.8. Let A be a matrix. The solutions to
the homogeneous equation A~x = ~0 is a linear subspace H, called the
nullspace of A, null(A).

Proof. ~0 ∈ H = null(A). If ~u and ~v ∈ H = null(A) then

A~u = ~0 and A~v = ~0.

But then
A(~u+ ~v) = A~u+ A~v = ~0 +~0 = ~0.

Thus ~u + ~v ∈ null(A) and null(A) is closed under addition. Similarly
if λ is a scalar then

A(λ~u) = λ(A~u) = λ~0 = ~0.
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Thus λ~u ∈ null(A) and null(A) is closed under scalar multiplication.
Thus null(A) is a linear subspace. �

Example 10.9. Let H be the plane 2x− 4y + 7z = 0 in R3.
Then H is a linear subspace of R3. Indeed, let

A =
(
2 −4 7

)
.

Then H = null(A) is the nullspace of A.

Example 10.10. Let H be the first quadrant in R2,

H = { (x, y) |x ≥ 0 and y ≥ 0 }.

Then H doesn’t look like a linear subspace. Let’s check that it isn’t.
0 ∈ H and in factH is closed under addition. If ~u = (a, b) and ~v = (c, d)
then

~u+ ~v = (a+ b, c+ d).

a+ b ≥ 0 and c+ d ≥ 0 so that ~u+ ~v ∈ H.
Suppose we take λ = 2. Then

λ~u = 2(a, b) = (2a, 2b).

But suppose that we take ~u = (1, 0) and λ = −1. Then
λ~u = −1(1, 0) = (−1, 0) /∈ H.

So H is not closed under scalar multiplication. H is not a linear sub-
space.

Consider polynomials of degree at most 2 in the variable t. For
example

f(t) = 3− 4t+ 6t2 or g(t) = 3− 5t.

The general polynomial of degree at most two looks like

p(t) = a0 + a1 + a2t
2.

Note that we can add polynomials,

f(t) + g(t) = (3− 4t+ 6t2) + (3− 5t) = 6− 9t+ 6t2

and multiply them by a scalar

3f(t) = 3(3− 4t+ 6t2) = 6− 12t+ 18t2.

There is even a zero polynomial.

q(t) = 0.

All of the basic rules of algebra which apply to vectors apply to
polynomials. For example if we add the zero polynomial to another
polynomial nothing happens.
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Pn denotes the set of polynomials of degree at most n in the variable
t. We think of Pn as being an abstract vector space, in which case we
will call the elements of Pn vectors.

Definition 10.11. Let f : V −→ W be a function between vector
spaces. We say that f is linear if

(1) It is additive: f(~v + ~w) = f(~v) + f(~w) for all vectors ~v and
~w ∈ Rn.

(2) f(λ~v) = λf(~v), for all scalars λ and vectors ~v ∈ Rn.

Example 10.12. Let

f : Pn −→ Pn−1 given by f(p(t)) =
dp(t)

dt
by the function which associates to a polynomial of degree n the deriv-
ative.

The fact that f is linear follows from basic rules of differentiation:

d(p(t) + q(t))

dt
=
dp(t)

dt
+
dq(t)

dt
and

d

dt
(λp(t)) = λ

dp(t)

dt
.

The derivative of a sum is the sum of the derivatives; the derivative of
a scalar multiple is the scalar multiples of the derivative.
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