10. VECTOR SUBSPACES

The solution to a homogeneous equation AZ = 0 in R? is one of

e The origin.

e A line through the origin.
e A plane through the origin.
e The whole of R3.

These are all examples of linear subspaces.

Definition 10.1. Let H be a subset of R™.
H is called a linear subspace if
(1)0€H.
(2) H is closed under addition: If @ and v € H then @+ v € H.
(8) H is closed under scalar multiplication: If @ and X\ is a scalar
then \u € H.

Geometrically H is closed under scalar multiplication if and only if H
is a union of lines through the origin. H is then closed under addition
if and only if it contains every plane containing ever pair of lines.

Example 10.2. Let H = {0}. Then H is a linear subspace. Indeed,
0eH. 0+0=0¢€ H. Similarly \0 = 0.

Example 10.3. Let H = R". Then H is a linear subspace. Indeed,
0 € H. H is obviously closed under addition and scalar multiplication.

Now consider lines in R3.

Example 10.4. Let H be the x-axis. Then H is a linear subspace.
Indeed, 0 € H. If @ and T belong to H then @ and T are multiples of
(1,0,0) and the sum is a multiple of (1,0,0). Similarly if X is a scalar
then M\ is a multiple of (1,0,0).

Example 10.5. Let H be a line in R? through the origin. Then H is
a linear subspace. Indeed, 0 € H. The elements of H are all multiples
of the same vector W. If u and U are in H then @ and v are multiples
of W. The sum is a multiple of W. Thus u+ v € H. Similarly if X is a
scalar then \u is a multiple of w.

It is interesting to see what happens when we don’t have a linear
subspace:

Example 10.6. Let
H={(x,y)|y=2"} CR
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a parabola, the graph of y = x>. This does contain the origin. Consider
the vector (1,1) € H and the vector (2,4) € H. The sum is

(1,1) + (2,4) = (3,5) ¢ H.

Similarly (1,1) € H but 2(1,1) = (2,2) ¢ H.
H is neither closed under addition nor under scalar multiplication.
H is not a linear subspace.

Theorem 10.7. Let vy, vs,...,v, be vectors in R™ and let
H = span{ | d is a linear combination of vy,va,...,v,}
be the span.

Then H is a linear subspace of R™.

Proof. 0eH , since 0 is a linear combination of U1, V2, ..., U, (use zero
weights). If @ and ¥ belong to H then @ and ¥ are linear combinations
of U, Vs, ..., U,. Suppose that

U= 2101 + ToZo + - - - + 2,7, and T =101 + Yoo + -+ + YpTp,
for scalars x1, s, ..., 7, and y1, Y2, ..., y,. Then

U+ 0= (z1 4+ Y1) + (T2 +y2)T2 + - (Tp + Yp) T
is a linear combination of vy, v, ..., 1, so that « + v € H. So H is

closed under addition. If X is a scalar then
AL = ()\271)171 + ()\1’2)1_"2 + ... ()\$p)l_"p
So H is closed under scalar multiplication. Thus H is a linear subspace.
U

If we are given a matrix A the span of the columns i, ds, ..., d, of
A is called the column space of A, col(A).
There is one other way to produce lots of linear subspaces:

Definition-Theorem 10.8. Let A be a matriz. The solutions to
the homogeneous equation Ax = 0 is a linear subspace H, called the

nullspace of A, null(A).
Proof. 0 € H = null(A). If @ and ¥ € H = null(A) then
Ai=0 and Av=0.
But then
AU+ 7)) =Au+ Av=0+0=0.
Thus @ + ¢ € null(A) and null(A) is closed under addition. Similarly
if \ is a scalar then

A(MT) = M(A@) = X0 = 0.
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Thus At € null(A) and null(A) is closed under scalar multiplication.
Thus null(A) is a linear subspace. O

Example 10.9. Let H be the plane 2x — 4y + 7z = 0 in R3.
Then H is a linear subspace of R3. Indeed, let

A=(2 —4 7).
Then H = null(A) is the nullspace of A.

Example 10.10. Let H be the first quadrant in R2,
H={(z,y)|r=0andy >0}

Then H doesn’t look like a linear subspace. Let’s check that it isn’t.
0 € H and in fact H is closed under addition. If & = (a,b) and v = (¢, d)
then

U+ U= (a+b,c+d).
a+b>0and c+d>0sothat ©+ v € H.
Suppose we take A = 2. Then
A= 2(a,b) = (2a,2b).
But suppose that we take @ = (1,0) and A = —1. Then
M= —1(1,0) = (—1,0) ¢ H.
So H is not closed under scalar multiplication. H is not a linear sub-
space.
Consider polynomials of degree at most 2 in the variable ¢. For
example
f(t)=3—4t+6t> or  g(t)=3— 5t
The general polynomial of degree at most two looks like
p(t) = ao + a1 + ast®.
Note that we can add polynomials,
f@)+gt) = (3 —4t+6t*) + (3 — 5t) = 6 — 9t + 6t
and multiply them by a scalar
3f(t) = 3(3 — 4t + 6t%) = 6 — 12 + 18t°.
There is even a zero polynomial.
q(t) =0.

All of the basic rules of algebra which apply to vectors apply to
polynomials. For example if we add the zero polynomial to another

polynomial nothing happens.
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P, denotes the set of polynomials of degree at most n in the variable
t. We think of P, as being an abstract vector space, in which case we
will call the elements of P, vectors.

Definition 10.11. Let f: V. — W be a function between wvector
spaces. We say that f is linear if
(1) It is additive: f(U + W) = f(U) + f(W) for all vectors v and
w e R".
(2) f(\U) = Af(V), for all scalars \ and vectors v € R™.
Example 10.12. Let

f: P, — Py given by fp(t) = d];—sft)

by the function which associates to a polynomial of degree n the deriv-
ative.

The fact that f is linear follows from basic rules of differentiation:
d(p(t) +q(t)) _ dp(t)  dq(t) _ L\ dp(t)
dt T Ta and G Ow(0) = A=~
The derivative of a sum is the sum of the derivatives; the derivative of
a scalar multiple is the scalar multiples of the derivative.
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