MODEL ANSWERS TO HWK #5

1. Suppose that the two dimensional vector space corresponding to [; is
spanned by u; and v;. Let [ be a line that meets [; at p and [ at ¢q. As
p € 1y and q € Iy, [ is represented by w = (ajuy + byv1) A (agug + bavy).
Expanding, w is a combination of uy A ug, u; A vg, v1 A ug and vy A vs.
Let U be the span of these four vectors. In particular the locus of lines
which meets [; and I, is certainly a subset of P(U). But the condition
that any such form is decomposable, is equivalent to the condition that
it is of the form w = (aju; + b1v1) A (azus + bavy). If we expand w then
we get the standard embedding of P! x P! into P? (up to change of
sign).

Alternatively it is clear that abstractly the locus of lines meeting /; and
l5 is isomorphic to P! x P!, as a line is specified by its intersection with
ll and lQ.

If I; and [, intersect, then a line that meets both of them is ether a line
that contains p = [; Ny or a line contained in the plane H = (I3, [5).
Thus the locus of lines is the union ¥, U ¥y, which we have seen is
the union of two planes. There locus of lines which meet p and are
contained in H is a line. So X, UXy is the union of two planes meeting
along a line.

2. The point is that there is no moduli to this question, so that we are
free to choose our favourite quadric. If we take XW =Y Z, so that we
have the image of P! x P! under the morphism

([Xo: Xu], [Yo : Y1) — [XoYo : X1Yo @ XoY1 : XuYi],
then the two families of lines are
[@S :aT : bS : b7 and [aS :bS = aT : bTY,

where the pair [a : b] parametrises the two families, and [S : T
parametrises the lines themselves (for fixed [a : b]). Thus a general
line from the first family is the span of

[a:0:0:0] and 0:a:0:9),
whilst a general line from the second family is the span of

[a:0:0:0] and 0:0:a:b.
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Thus a line from the first (respectively second family) is represented
by

w = (aey+bes) A(aes+bey) respectively (aey+bes) A (aesz Nbey).
Expanding, the family of lines from the first family is given as

a’(e; Aeg) +abler Aeg+ ez Aey) + b%(e3 Aey),
and the second is given as

a’(e; Aes) +ableg A ey +ea Aes) + b2 (ea Aey).

Thus we get two conics lying in the two planes spanned by e; A es,
er Neg+e3Neyand e3 Aey, and e; Aes, e Aeg+ e Aesg and es A ey.
Since these vectors span A2V, the two planes are complementary, and
neither of them is contained in G(1,3).
Now suppose that we have a plane conic C' C G(1, 3), where the span
A of C, is not contained in G(1,3). In this case, by reasons of degree,
C=ANG(1,3).
Suppose that when we take two general points of the conic the corre-
sponding lines [ and m intersect in P2. Pick a third point, corresponding
to a third line n. If there is a common point p to all three then the
conic C' meets the plane ¥, in three points, so that the conic C' must
contain the line ¥, N A, a contradiction. But then [, m and n must
be coplanar (they lie in the plane spanned H by the three intersection
points m Nn, lNn and [ N'm). In this case C' contains three points of
the plane Yy, so that it contains the line A N Yy, a contradiction.
So now we know that two general points of C' correspond to two skew
lines. There are two ways to finish. Here is the first. We may find three
points of C' which correspond to three skew lines [, n and m. Three
skew lines have no moduli, that is, any three skew lines are projectively
equivalent (proved in class), so there is an element ¢ € PGL4(K) which
carries these three lines to any other three. ¢ acts on P(A%V), fixing
G(1,3) and carries three points of the plane A to any other three points
of G(1,3) which correspond to three skew lines. But any plane is
determined by any three points which are not collinear and so we may
assume that A is the plane coming from the quadric, as above.
Here is the second. G(1,3) is determined by a quadratic polynomial of
maximal rank. This determines a bilinear form on A?V (up to scalars).
In particular given A there is a dual plane A’, which is complementary
to A and is also not contained in G(1,3). Let C" = A'NG(1, 3), another
smooth conic. Since A’ is dual to A under the pairing determined by
G(1,3) this says that if we pick [u Av] € C and [u' A V'] € C' then
uNvAu Av' = 0, that is, the corresponding lines [ and I are concurrent.
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So now we have two families of skew lines {/} and {I'} in P3, such that
a pair of lines from both families are concurrent. Pairs of lines from
both families are parametrised by P! x P! and we get a morphism

P! x P! — P3,
which sends pair (I, m) to I N'm. This morphism has a bidegree, which
must be (1,1) since P! x {p} and {q} x P! are both sent to a line. But
then the image is the Segre, up to projective equivalence and C' is just
the family of lines of one ruling.
If A is contained in G(1,3) then A = X, or Xp. In the first case, a
conic in ¥, is the same as the family of lines in a quadric cone (which
automatically pass through the vertex p of the cone). If A = Xy, then
a conic C' C A is simply the family of tangent lines to a conic in H.
3. Let’s warm up a little and see what happens if we start with the
line m given by Zy = Z3 = 0. Note that for each point p of this line
we get a plane ¥, C G(1,3). So we want a family of planes inside
G(1,3). The natural guess is that this family is given by a hyperplane
section. If we look at the hyperplane section p3; = 0 we get a cone over
a quadric in P3. This is indeed covered by copies of P2. The condition
that p34 = 0 means that that the term e3 A e4 does not appear, which
is the condition that we meet the line m.
(a) Since a conic degenerates to a union of two intersecting lines, the
equation defining this conic ought to be quadratic. Consider \Z? —
wZoZy. If we let X go to zero then we get ZyZs = 0, the union of two
lines. This gives the equation p14p34. On the other hand if we let p go
to zero we get the line Z7 = 0 counted twice. This gives the equation
p3, = 0. So we guess the equation we want is some linear combination
of piapss and p2, = 0. Let’s guess

P14P34 = P%zx-

Now an open subset of points of the conic has the form [t* : ¢ : 1 : 0].
Thus an open subset of the points of the Grassmannian which intersect

this conic has the form
2t 10
0 a b 1)°

We have pyy = t2, p3y = 1 and pyy = t. Clearly these set of points
satisfy the equation pi4pss = p3,. Now suppose we start with a line
whose Pliicker coordinates satisfy this equation. Let A = (a;;) be a2x4
matrix whose rows span the plane corresponding to [. If the last column
is zero then p,y = 0 and the equation holds automatically. Applying
elementary row operations, we may assume that the last column is the

vector (0,1). In this case p;s = a1; and the first row has the form
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(t2,¢,1,0) or it is equal to (1,0,0,0). Either way, this corresponds to
a point on the conic.

(b) Recall that the ideal of the twisted cubic C' is generated by the
three quadrics QO = ZOZ3 — leQ, Ql = Z12 — Z(]Z27 QQ = ZQZ — leg.
Now note that a line [ intersects the twisted cubic if and only if the
restrictions of g, ()1 and ()5 to [ span a vector space of dimension at
most two.

Indeed if the line [ intersects C' then ¢; = @;]; all have a common
zero and so cannot span the full space of quadratic polynomials on I,
which has dimension three (and no common zeroes). Conversely if g,
¢1 and @y span a vector space of dimension at most two then some
linear combination Q) = \gQo+ A1 Q1 + A2@Q2 contains the line [. In this
case [ is a line of one of the rulings of @, C' is a curve of type (2,1) on
Q ~ P! x P! and so [ intersects C' in one (or two) point(s).

Consider the open subset U of the Grassmannian where p;o = 1, that
is consider matrices of the form

1 0 a b
A= 1)
Natural coordinates on any line [ € U are X = Z and Y = Z;. In fact
at the point [\ : p: Aa + pc: Ab+ pd)] of the line, we have
Zo=A=X
Zl = U = Y
Zy=Ma+ pc=aX +cY
Zs =Ab+ pd =0X +dY.
In this basis
G =bX?+ (d—a)XY — cY?
@ =—aX?—cXY +Y?
g = a’X? — (2ac — b)XY + (> — d)Y?.

It follows that the locus where are interested in is the rank two locus
of the following matrix

a’> 2ac—b 2 —d
If we expand this determinant then we get

—ad?® + ac®d + bed + 2ad — be® — 3abe + b — .
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Note that e = ad — bc is a determinant. Thus the term of degree four
simplifies to

ac’d — bc® = *(ad — be) = .
Note that a = —pa3/pi2, b = —pas/p12, ¢ = p13/P12, d = p1a/p12, and
e = ps34/p12. Substituting and multiplying by p3, gives an equation of
degree three in the Pliicker coordinates,

p%3P34 + P23p%4 — P2aP13P14 + 220%31?14 — 3pa3paapiz + P12P§4 + p%g-



