
MODEL ANSWERS TO HWK #1

1. (i) Clear.
(ii) The equaliser of f1 and f2 : X −→ Y is the set

{x ∈ X | f1(x) = f2(x) },

together with its natural inclusion into X.
(iii) Suppose that C admits equalisers. Let f : X −→ B and g : Y −→
B be two morphisms. Then there are two morphisms p : X × Y −→ B
(respectively q), the composition of projection down to X (respectively
projection down to Y ) and then f (respectively g) as appropriate. Let
E be the equaliser of p and q. Then E maps to X×Y , whence it maps
to X and Y , via either projection, and these two morphisms become
equal when composed with f and g. Now suppose that Z maps to both
X and Y over B. Then it maps to X × Y and the composition of this
map with either p or q is the same as the original map from Z to B. It
follows that Z maps to E, by the universal property of the equaliser.
But then E satisfies the universal property of the fibre product.
Now suppose that C admits fibre products. If f and g : X −→ Y are
two morphisms, then we get a morphism X −→ Y × Y , by definition
of the product. Note that there is also a morphism δ : Y −→ Y × Y
induced by the identity on both factors. Let E = X ×

Y×Y
Y . Then E

maps to X and composing this map with either f or g is the same.
Suppose that Z maps to X, such that the composition with f or g is
the same. Then Z maps to X and its maps to Y over Y × Y . So Z
maps to E, by the universal property of the fibre product. But then E
satisfies the universal property of the equaliser.
2. 2.7. Since K is a field, it has a unique prime ideal, and so SpecK
certainly has only one point, and the structure sheaf is represented by
K itself. To give a morphism of SpecK to X, we certainly have to pick
out a point x ∈ X. But then, by definition of a scheme, there is an
induced morphism of local rings,

OX,x −→ K

But this is equivalent to a ring homomorphism, which sends the max-
imal ideal mx to a point, which in turn is equivalent to giving an
inclusion of the residue field of x into K.
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2.16. (a) Suppose that x ∈ U . As U is open,

OU,x ' OX,x,

and the rest is clear.
(b) As X is compact there is an open cover {U1, U2, . . . , Uk} of X by
finitely many affines. By our answer to part (a), Xf ∩ Ui = Ufi , where
fi is the restriction of f to Ui. As a is zero on Xf , its restriction ai to
Ufi is zero. As Ui = SpecAi is affine, it follows that Ufi = Spec(Ai)fi .
In particular fni

i ai = 0, for some ni ∈ N. As we have a finite cover,
we may assume that n = ni is independent of i. We may also assume
n > 0. Since the restriction of fna ∈ Γ(X,OX) to each set Ui of the
open cover {U1, U2, . . . , Uk} is zero, it follows that fna is zero.
(c) Let bi be the restriction of b to Ui and let fi be the restriction of
f to Ui. As Ui is affine and Xf ∩ Ui = Ufi by part (a), we may lift
fni
i bi to ci on Ui. Now ci − cj restricts to zero on Uij ∩Xf . As we are

assuming that Uij is compact, it follows that ci− cj restricts to zero on
the whole of Uij, by our answer to part (b). But then there is a section
c on the whole of X which restricts to ci on Ui. The axioms for a sheaf
also imply that c is a lift of fnb.
(d) Note first that X is compact as it has a finite cover by open affines,
which are always compact.
Consider the natural restriction map

A = Γ(X,OX) −→ Γ(Xf ,OXf
).

As f is sent to a unit, there is a natural map

Af −→ Γ(Xf ,OXf
).

The answer to part (b) proves that this map is injective and the answer
to part (c) that it is surjective. Hence this map is an isomorphism.
2.17 (a) The map on topological spaces is surely a homeomorphism
under these circumstances. It suffices, then, to check that the map on
structure sheaves is an isomorphism. As this may be checked on stalks,
the result follows.
(b) If X is affine, just take r = f = 1.
Otherwise suppose that we have f1, f2, . . . , fr such that Ufi is affine,
where f1, f2, . . . , fr generate the unit ideal. Let Y = SpecA. By (2.4)
there is a morphism

f : X −→ Y,

induced by the identity map A −→ A. Let Vfi be the open affine subset
of Y where fi is not zero. Then f−1(Vfi) = Ufi and both sets are affine.
By our answer to (2.16.d), they are both isomorphic to SpecAfi and the
induced map on Afi is the identity. So the morphism f is certainly an
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isomorphism over the open subset Vfi . But since f1, f2, . . . , fr generate
the unit ideal, these sets cover X and we are done by part (a).
Before we prove the next exercises, we recall a result that was proved
implicitly in the lectures. Suppose that X is a scheme and that U =
SpecA and V = SpecB are two affine schemes. Then U ∩V be covered
by finitely many affine schemes which are simultaneously isomorphic
to Ug and Vh, where g ∈ A and h ∈ B.
3.1 It suffices to prove that f−1(V ) is covered by open affines U =
SpecA such that A is a finitely generated B-algebra. By the obser-
vation above we may assume that Y = V = SpecB and that we can
cover Y by finitely many open affine subsets Vi = Ufi , where f−1(Vi)
can be covered by open affines which are the spectra of finitely gener-
ated Bhi

-algebras. For each i, pick Ui = SpecAi lying over Vi where Ai

is a finitely generated Bi-algebra.
Let U be the union of U1, U2, . . . , Uk. As sets of this form cover f−1(Y )
it suffices to prove that U is an open affine which is the spectrum of a
finitely generated B-algebra. It is clear that U is open.
Let gi be the image of fi in A = Γ(U,OU). Then Ui is the locus where
gi is not equal to zero. g1, g2, . . . , gk generate the unit ideal of A, as
f1, f2, . . . , fk generate the unit ideal of B. It follows by (2.17), that U
is affine and it suffices to prove that A is a finitely generated B-algebra.
So now we are reduced to the following problem in algebra. Let B be an
A-algebra, and let f1, f2, . . . , fk generate the unit ideal. Suppose that
gi is the image of fi and suppose that Ai = Agi is a finitely generated
Bi = Bfi-algebra. Then A is a finitely generated B-algebra.
We now prove this result in commutative algebra. To this end, pick
generators ci1, ci2, . . . , cili of Ai over Bi. Then each cij has the form
aij/g

n
i , where we may assume that n is constant, as we have only finitely

many indices. I claim that aij, for every i and j, generates A over B.
Pick a ∈ A. Then if φi : A −→ Ai is the natural map, we have

φi(a) = p(cij),

for some for some polynomial p, with coefficients in Bi. Clearing de-
nominators, we then have

gNi a = q(aij),

for some polynomial q, with coefficients in Ai. We may write∑
hig

N
i = 1,
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for some hi. But then

a =
∑

hig
N
i a,

=
∑

hi

(∑
j

q(aij)

)
,

as required.
3.2 The key observation is that a scheme is compact iff it is the finite
union of affine subschemes. Indeed, if X is a scheme, then it is union
of open affine subschemes, and if X is compact, then finitely many
cover. Conversely, any affine scheme is compact, and the finite union
of compact sets is always compact.
So now suppose that f : X −→ Y is a compact morphism, and let V be
an affine subset. Using the argument just before (3.1) we may assume
that Y = V . Let Vi be an open affine cover of Y such that f−1(Vi) is
compact. As Y is affine we may assume that this cover is finite. But
then f−1(Y ) is compact, as it is a finite union of compact subsets.
3.3 (a) Clear, from the first paragraph of (3.2).
(b) Simply apply (3.1) and (3.2).
(c) By now standard tricks, we can reduce this problem to showing
that if a B-algebra A contains elements f1, f2, . . . , fk which generate
the unit ideal and Afi is a finitely generated B-algebra, then so is A.
But this is easily implied by part of the proof of (3.1).
3.4 Follows almost exactly the same proof as (3.1), and (3.3.c). We
are reduced to proving that if A is a B-algebra and f1, f2, . . . , fk are
elements of B which generate the unit ideal, such that Ai = Agi is a
finitely generated Bi = Bfi-module, where gi is the image of fi, then
A is a finitely generated B-module.
Repeating the argument given in (3.1), we are given aij ∈ A whose
images cij under φi generate Ai as a Bi-module. As before this implies
that

gNi a =
∑
j

bijaij,

for some bij ∈ B. It is then easy to see that we may write a as a linear
combination of aij, so that the aij generate A as a B-module.
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