9. VARIETIES AS SCHEMES

Now we turn to the definition of projective schemes.

The definition mirrors that for affine schemes. First we start with a graded ring S,

$$S = \bigoplus_{d \in \mathbb{N}} S_d$$

We set

$$S_+ = \bigoplus_{d>0} S_d,$$

and we let $\operatorname{Proj} S$ denote the set of all homogeneous prime ideals of S, which do not contain S_+ . We put a topology on $\operatorname{Proj} S$ analogously to the way we put a topology on $\operatorname{Spec} S$; if \mathfrak{a} is a homogeneous ideal of S, then we set

$$V(\mathfrak{a}) = \{ \mathfrak{p} \in \operatorname{Proj} S \, | \, \mathfrak{a} \subset \mathfrak{p} \}.$$

The Zariski topology is the topology where these are the closed sets. If \mathfrak{p} is a homogeneous prime ideal, then $S_{(\mathfrak{p})}$ denotes the elements of degree zero in the localisation of S at the set of homogenous elements which do not belong to \mathfrak{p} . We define a sheaf of rings \mathcal{O}_X on $X = \operatorname{Proj} S$ by considering, for an open set $U \subset X$, all functions

$$s\colon U\longrightarrow \coprod_{\mathfrak{p}\in U}S_{(\mathfrak{p})},$$

such that $s(\mathfrak{p}) \in S_{(\mathfrak{p})}$, which are locally represented by quotients. That is given any point $\mathfrak{q} \in U$, there is an open neighbourhood V of \mathfrak{p} in U and homogeneous elements a and f in S of the same degree, such that for every $\mathfrak{p} \in V$, $f \notin \mathfrak{p}$ and $s(\mathfrak{p})$ is represented by the class of $a/f \in S_{(\mathfrak{p})}$.

Proposition 9.1. Let S be a graded ring and set $X = \operatorname{Proj} S$.

- (1) For every $\mathfrak{p} \in X$, the stalk $\mathcal{O}_{X,\mathfrak{p}}$ is isomorphic to $S_{(\mathfrak{p})}$.
- (2) For any homogeneous element $f \in S_+$, set

$$U_f = \{ \mathfrak{p} \in \operatorname{Proj} S \mid f \notin \mathfrak{p} \}.$$

Then U_f is open in Proj S, these sets cover X and we have an isomorphism of locally ringed spaces

$$(U_f, \mathcal{O}_X|_{U_f}) \simeq \operatorname{Spec} S_{(f)}.$$

where $S_{(f)}$ consists of all elements of degree zero in the localisation S_{f} .

In particular $\operatorname{Proj} S$ is a scheme.

Proof. The proof of (1) follows similar lines to the affine case and is left as an exercise for the reader. $U_f = X - V(\langle f \rangle)$ and so U_f is certainly open and these sets certainly cover X. We are going to define an isomorphism

$$(g, g^{\#}) \colon (U_f, \mathcal{O}_X|_{U_f}) \longrightarrow \operatorname{Spec} S_{(f)}.$$

If \mathfrak{a} is any homogeneous ideal of S, consider the ideal $\mathfrak{a}S_f \cap S_{(f)}$. In particular if \mathfrak{p} is a prime ideal of S, then $\phi(\mathfrak{p}) = \mathfrak{p}S_f \cap S_{(f)}$ is a prime ideal of $S_{(f)}$. It is easy to see that ϕ is a bijection. Now $\mathfrak{a} \subset \mathfrak{p}$ iff

$$\mathfrak{a}S_f \cap S_{(f)} \subset \mathfrak{p}S_f \cap S_{(f)} = \phi(\mathfrak{p}),$$

so that ϕ is a homeomorphism. If $\mathfrak{p} \in U_f$ then $S_{(\mathfrak{p})}$ and $(S_{(f)})_{\phi(\mathfrak{p})}$ are naturally isomorphic. This induces a morphism $g^{\#}$ of sheaves which is easily seen to be an isomorphism. \Box

Definition 9.2. Let R be a ring. **Projective** n-space over R, denoted \mathbb{P}^n_R , is the proj of the polynomial ring $R[x_1, x_2, \ldots, x_n]$.

Note that \mathbb{P}^n_R is a scheme over Spec R.

Definition-Lemma 9.3. If X is a topological space, then let t(X) be the set of irreducible closed subsets of X. Then t(X) is naturally a topological space and if we define a map $\alpha \colon X \longrightarrow t(X)$ by sending a point to its closure then α induces a bijection between the closed sets of X and t(X).

Proof. Observe that

- If $Y \subset X$ is a closed subset, then $t(Y) \subset t(X)$,
- if Y_1 and Y_2 are two closed subsets, then $t(Y_1 \cup Y_2) = t(Y_1) \cup t(Y_2)$, and
- if Y_{α} is any collection of closed subsets, then $t(\cap Y_{\alpha}) = \cap t(Y_{\alpha})$.

The defines a topology on t(X) and the rest is clear.

Theorem 9.4. Let k be an algebraically closed field. Then there is a fully faithful functor t from the category of varieties over k to the category of schemes. For any variety V, the set of points of V may be recovered from the closed points of t(V) and the sheaf of regular functions is the restriction of the structure sheaf to the set of closed points.

Proof. We will show that $(t(V), \alpha_* \mathcal{O}_V)$ is a scheme, where \mathcal{O}_V is the sheaf of regular functions on V. As any variety has an open affine cover, it suffices to prove this for an affine variety, with coordinate ring

A. Let X be the spectrum of A. We are going to a define a morphism of locally ringed spaces,

$$\beta = (f, f^{\#}) \colon (V, \mathcal{O}_V) \longrightarrow (X, \mathcal{O}_X).$$

If $p \in V$, then let $f(p) = m_p \in X$ be the maximal ideal of elements of A vanishing at p. By the Nullstellensatz, f induces a bijection between the closed points of X and the points of V. It is easy to see that f is a homeomorphism onto its image. Now let $U \subset X$ be an open set. We need to define a ring homomorphism

$$f^{\#}(U) \colon \mathcal{O}_X(U) \longrightarrow f_*\mathcal{O}_V(f^{-1}(U)).$$

Let $s \in \mathcal{O}_X(U)$. We want to define $r = f^{\#}(U)(s)$. Pick $p \in U$. Then we define r(p) to be the image of $s(m_p) \in A_{m_p}$ inside the quotient

$$A_{m_p}/m_p \simeq k.$$

It is easy to see that r is a regular function and that $f^{\#}(U)$ is a ring isomorphism. As the irreducible subsets of V are in bijection with the prime ideals of A, it follows that (X, \mathcal{O}_X) is isomorphic to $(t(V), \alpha_* \mathcal{O}_V)$, and so the latter is an affine scheme.

Note that there is a natural inclusion

$$k \subset A$$

which associates to a scalar the constant function on V. But then X is a scheme over Spec k. It is easy to check that t is fully faithful. \Box

Before we check that projective morphisms are proper, let's do a warm up case:

Theorem 9.5. Let $f: \Delta^* \longrightarrow \mathbb{P}^n$ be a meromorphic map of the punctured disk into projective space over \mathbb{C} .

Then f extends to a holomorphic map $g: \Delta \longrightarrow \mathbb{P}^n$.

Proof.

$$f(z) = [f_0(z) : f_1(z) : \dots : f_n(z)].$$

Each meromorphic function $f_i(z) = z^{m_i}h_i(z)$, where m_i is an integer and $h_i(z)$ is holomorphic, $h_i(0)$ is non-zero. Let m be the minimum of m_0, m_1, \ldots, m_n . Then

$$g_i(z) = z^{-m} f_i(z) = z^{m_i - m} h_i(z)$$

is holomorphic and at least one of $g_i(0)$ is non-zero. On the other hand

$$g(z) = [g_0(z) : g_1(z) : \dots : g_n(z)]$$

= $[z^{-m} f_0(z) : z^{-m} f_1(z) : \dots : z^{-m} f_n(z)]$
= $f(z)$,

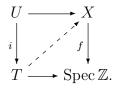
whenever z is non-zero, so that $g: \Delta \longrightarrow \mathbb{P}^n$ is a holomorphic map extending f.

Definition 9.6. Let $\pi: X \longrightarrow S$ be a morphism.

We say that π is a **projective morphism** if it can be factored into a closed embedding $i: X \longrightarrow \mathbb{P}^n_S$ and the projection morphism $\mathbb{P}^n_S \longrightarrow S$.

Theorem 9.7. A projective morphism is proper.

Proof. Since a closed immersion is of finite type, and using the results of §8, it suffices to prove that $X = \mathbb{P}^n_{\text{Spec }\mathbb{Z}}$ is proper over $\text{Spec }\mathbb{Z}$. Now X is covered by open affines of the form $U_i = \text{Spec }\mathbb{Z}[x_1, x_2, \ldots, x_n]$. Thus X is certainly of finite type over $\text{Spec }\mathbb{Z}$. We check the valuative criteria. Suppose we have a commutative diagram



Let $\xi_1 \in X$ be the image of the unique point of U. By induction on n, we may assume that ξ_1 is not contained in any of the n + 1 standard hyperplanes, so that $\xi_1 \in U = \bigcap U_i$. Thus the functions x_i/x_j are all invertible on U.

There is an inclusion $k(\xi_1) \subset K$. Let f_{ij} be the image of x_i/x_j . Then

$$f_{ik} = f_{ij} f_{jk}.$$

Let $\nu: K \longrightarrow G$ be the valuation associated to R. Let $g_i = \nu(f_{i0})$ and pick k such that g_k is minimal. Then

$$\nu(f_{ik}) = g_i - g_k \ge 0.$$

Hence $f_{ik} \in R$. Define a ring homomorphism

 $\mathbb{Z}[x_0/x_k, x_1/x_k, \dots, x_n/x_k] \longrightarrow R$ by sending $x_i/x_k \longrightarrow f_{ik}$.

This gives a morphism $T \longrightarrow U_k$ and by composition a morphism $T \longrightarrow X$.

Using this, we can finally characterise the image of the functor t.

Proposition 9.8. Fix an algebraically closed field k. Then the image of the functor t is precisely the set of integral quasi-projective schemes, and the image of a projective variety is an integral projective scheme.

In particular for every variety V, t(V) is an integral separated scheme of finite type over k.

Proof. It only suffices to prove that every integral projective scheme Y is the image of a variety. Let Y be a closed subscheme of \mathbb{P}_k^n . Then the set of closed points V is a closed subset of the variety \mathbb{P}^n . If Y is irreducible, as V is dense in Y, it follows that V is irreducible. If Y is reduced, it is easy to see that t(V) = Y, since they have the same support and they are both reduced. \Box

Definition 9.9. A variety is an integral separated scheme of finite type over an algebraically closed field. If in addition it is proper, then we say that is a complete variety.