
9. Varieties as schemes

Now we turn to the definition of projective schemes.
The definition mirrors that for affine schemes. First we start with a

graded ring S,

S =
⊕
d∈N

Sd.

We set

S+ =
⊕
d>0

Sd,

and we let ProjS denote the set of all homogeneous prime ideals of S,
which do not contain S+. We put a topology on ProjS analogously to
the way we put a topology on SpecS; if a is a homogeneous ideal of S,
then we set

V (a) = { p ∈ ProjS | a ⊂ p }.
The Zariski topology is the topology where these are the closed sets.
If p is a homogeneous prime ideal, then S(p) denotes the elements of
degree zero in the localisation of S at the set of homogenous elements
which do not belong to p. We define a sheaf of rings OX on X = ProjS
by considering, for an open set U ⊂ X, all functions

s : U −→
∐
p∈U

S(p),

such that s(p) ∈ S(p), which are locally represented by quotients. That
is given any point q ∈ U , there is an open neighbourhood V of p in
U and homogeneous elements a and f in S of the same degree, such
that for every p ∈ V , f /∈ p and s(p) is represented by the class of
a/f ∈ S(p).

Proposition 9.1. Let S be a graded ring and set X = ProjS.

(1) For every p ∈ X, the stalk OX,p is isomorphic to S(p).
(2) For any homogeneous element f ∈ S+, set

Uf = { p ∈ ProjS | f /∈ p }.

Then Uf is open in ProjS, these sets cover X and we have an
isomorphism of locally ringed spaces

(Uf ,OX |Uf
) ' SpecS(f).

where S(f) consists of all elements of degree zero in the locali-
sation Sf .

In particular ProjS is a scheme.
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Proof. The proof of (1) follows similar lines to the affine case and is
left as an exercise for the reader. Uf = X − V (〈f〉) and so Uf is
certainly open and these sets certainly cover X. We are going to define
an isomorphism

(g, g#) : (Uf ,OX |Uf
) −→ SpecS(f).

If a is any homogeneous ideal of S, consider the ideal aSf ∩ S(f). In
particular if p is a prime ideal of S, then φ(p) = pSf ∩ S(f) is a prime
ideal of S(f). It is easy to see that φ is a bijection. Now a ⊂ p iff

aSf ∩ S(f) ⊂ pSf ∩ S(f) = φ(p),

so that φ is a homeomorphism. If p ∈ Uf then S(p) and (S(f))φ(p) are
naturally isomorphic. This induces a morphism g# of sheaves which is
easily seen to be an isomorphism. �

Definition 9.2. Let R be a ring. Projective n-space over R, de-
noted PnR, is the proj of the polynomial ring R[x1, x2, . . . , xn].

Note that PnR is a scheme over SpecR.

Definition-Lemma 9.3. If X is a topological space, then let t(X) be
the set of irreducible closed subsets of X. Then t(X) is naturally a
topological space and if we define a map α : X −→ t(X) by sending a
point to its closure then α induces a bijection between the closed sets of
X and t(X).

Proof. Observe that

• If Y ⊂ X is a closed subset, then t(Y ) ⊂ t(X),
• if Y1 and Y2 are two closed subsets, then t(Y1∪Y2) = t(Y1)∪t(Y2),

and
• if Yα is any collection of closed subsets, then t(∩Yα) = ∩t(Yα).

The defines a topology on t(X) and the rest is clear. �

Theorem 9.4. Let k be an algebraically closed field. Then there is
a fully faithful functor t from the category of varieties over k to the
category of schemes. For any variety V , the set of points of V may
be recovered from the closed points of t(V ) and the sheaf of regular
functions is the restriction of the structure sheaf to the set of closed
points.

Proof. We will show that (t(V ), α∗OV ) is a scheme, where OV is the
sheaf of regular functions on V . As any variety has an open affine
cover, it suffices to prove this for an affine variety, with coordinate ring
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A. Let X be the spectrum of A. We are going to a define a morphism
of locally ringed spaces,

β = (f, f#) : (V,OV ) −→ (X,OX).

If p ∈ V , then let f(p) = mp ∈ X be the maximal ideal of elements of
A vanishing at p. By the Nullstellensatz, f induces a bijection between
the closed points of X and the points of V . It is easy to see that f is
a homeomorphism onto its image. Now let U ⊂ X be an open set. We
need to define a ring homomorphism

f#(U) : OX(U) −→ f∗OV (f−1(U)).

Let s ∈ OX(U). We want to define r = f#(U)(s). Pick p ∈ U . Then
we define r(p) to be the image of s(mp) ∈ Amp inside the quotient

Amp/mp ' k.

It is easy to see that r is a regular function and that f#(U) is a ring
isomorphism. As the irreducible subsets of V are in bijection with the
prime ideals of A, it follows that (X,OX) is isomorphic to (t(V ), α∗OV ),
and so the latter is an affine scheme.

Note that there is a natural inclusion

k ⊂ A,

which associates to a scalar the constant function on V . But then X
is a scheme over Spec k. It is easy to check that t is fully faithful. �

Before we check that projective morphisms are proper, let’s do a
warm up case:

Theorem 9.5. Let f : ∆∗ −→ Pn be a meromorphic map of the punc-
tured disk into projective space over C.

Then f extends to a holomorphic map g : ∆ −→ Pn.

Proof.
f(z) = [f0(z) : f1(z) : · · · : fn(z)].

Each meromorphic function fi(z) = zmihi(z), where mi is an integer
and hi(z) is holomorphic, hi(0) is non-zero. Let m be the minimum of
m0,m1, . . . ,mn. Then

gi(z) = z−mfi(z) = zmi−mhi(z)

is holomorphic and at least one of gi(0) is non-zero. On the other hand

g(z) = [g0(z) : g1(z) : · · · : gn(z)]

= [z−mf0(z) : z−mf1(z) : · · · : z−mfn(z)]

= f(z),
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whenever z is non-zero, so that g : ∆ −→ Pn is a holomorphic map
extending f . �

Definition 9.6. Let π : X −→ S be a morphism.
We say that π is a projective morphism if it can be factored into a

closed embedding i : X −→ PnS and the projection morphism PnS −→ S.

Theorem 9.7. A projective morphism is proper.

Proof. Since a closed immersion is of finite type, and using the results
of §8, it suffices to prove that X = PnSpecZ is proper over SpecZ. Now
X is covered by open affines of the form Ui = SpecZ[x1, x2, . . . , xn].
Thus X is certainly of finite type over SpecZ. We check the valuative
criteria. Suppose we have a commutative diagram

U - X

T

i

?
-

-

SpecZ.

f

?

Let ξ1 ∈ X be the image of the unique point of U . By induction on n,
we may assume that ξ1 is not contained in any of the n + 1 standard
hyperplanes, so that ξ1 ∈ U =

⋂
Ui. Thus the functions xi/xj are all

invertible on U .
There is an inclusion k(ξ1) ⊂ K. Let fij be the image of xi/xj. Then

fik = fijfjk.

Let ν : K −→ G be the valuation associated to R. Let gi = ν(fi0) and
pick k such that gk is minimal. Then

ν(fik) = gi − gk ≥ 0.

Hence fik ∈ R. Define a ring homomorphism

Z[x0/xk, x1/xk, . . . , xn/xk] −→ R by sending xi/xk −→ fik.

This gives a morphism T −→ Uk and by composition a morphism
T −→ X. �

Using this, we can finally characterise the image of the functor t.

Proposition 9.8. Fix an algebraically closed field k. Then the image
of the functor t is precisely the set of integral quasi-projective schemes,
and the image of a projective variety is an integral projective scheme.

In particular for every variety V , t(V ) is an integral separated scheme
of finite type over k.
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Proof. It only suffices to prove that every integral projective scheme Y
is the image of a variety. Let Y be a closed subscheme of Pnk . Then
the set of closed points V is a closed subset of the variety Pn. If Y is
irreducible, as V is dense in Y , it follows that V is irreducible. If Y
is reduced, it is easy to see that t(V ) = Y , since they have the same
support and they are both reduced. �

Definition 9.9. A variety is an integral separated scheme of finite
type over an algebraically closed field. If in addition it is proper, then
we say that is a complete variety.
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