
8. Prim and proper

Okay prim is not a property of schemes, but proper and separated
are. In this section we want to extend the intuitive notions of being
Hausdorff and compact to the category of schemes.

First we come up with a formal definition of both properties and
then we investigate how to check the formal definitions in practice.
We start with the definition of separated, which should be thought as
corresponding to Hausdorff.

Definition 8.1. Let f : X −→ Y be a morphism of schemes. The
diagonal morphism is the unique morphism ∆: X −→ X×

Y
X, given

by applying the universal property of the fibre product to the identity
map X −→ X, twice.

We say that the morphism f is separated if the diagonal morphism
is a closed immersion.

Example 8.2. Consider the line X, with a double origin, obtained by
gluing together two copies of A1

k, without identifying the origins. Con-
sider the fibre square over k, X ×

k
X. This is a doubled affine plane,

which has two x-axes, two y-axes and four origins. The diagonal mor-
phism, only hits two of those four origins, whilst the closure contains
all four origins.

Proposition 8.3. Every morphism of affine schemes is separated.

Proof. Suppose we are given a morphism of affine schemes f : X −→ Y ,
where X = SpecA, Y = SpecB. Then the diagonal morphism is given
by,

A⊗
B
A −→ A where a⊗ a′ −→ aa′.

As this is a surjective ring homomorphism, it follows that ∆ is a closed
immersion. �

Corollary 8.4. f : X −→ Y is separated if and only if the image of
the diagonal morphism is a closed subset.

Proof. One direction is clear. So suppose that the image of the diagonal
morphism is closed. We need to prove that ∆: X −→ ∆(X) is a
homeomorphism and that OX×

Y
X −→ ∆∗OX is surjective. Consider

the first projection p1 : X×
Y
X −→ X. As the composition p1 ◦∆ is the

identity, it is immediate that ∆ is a homeomorphism onto its image.
To check surjectivity of sheaves, we may work locally. Pick p ∈ X

and an open affine neighbourhood V ⊂ Y of the image q ∈ Y . Let U
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be an open affine neighbourhood of p contained in the inverse image of
V . Then U ×

V
U is an open affine neighbourhood of ∆(p), and by (8.3),

∆: U −→ U ×
V
U is a closed immersion. But then the map of sheaves

is surjective on stalks at p. �

The idea of how to characterise both properties (separated and proper),
is based on the idea of probing with curves. After all, the clasic exam-
ple of the doubled origin, admits an open immersion with two different
extensions. Firstly, we need to work more locally than this, so that we
want to work with local rings. However, our schemes are so general,
that we also need to work with something more general than a curve.
We recall some basic facts about valuations and valuation rings.

Definition 8.5. Let K be a field and let G be a totally ordered abelian
group. A valuation of K with values in G, is a map

ν : K − {0} −→ G,

such that for all x and y ∈ K − {0} we have:

(1) ν(xy) = ν(x) + ν(y).
(2) ν(x+ y) ≥ min(ν(x), ν(y)).

Definition-Lemma 8.6. If ν is a valuation, then the set

R = {x ∈ K | ν(x) ≥ 0 } ∪ {0},

is a subring of K, which is called the valuation ring of ν. The set

m = {x ∈ K | ν(x) > 0 } ∪ {0},

is an ideal in R and the pair (R,m) is a local ring.

Proof. Easy check. �

Definition 8.7. A valuation is called a discrete valuation if G = Z.
The corresponding valuation ring is called a discrete valuation ring.

Let X be a variety. There is essentially one way to get a discrete
valuation of the function field of X.

Example 8.8. Let X be a smooth variety, and let x be a point of X.
Then every element of K = K(X) is of the form f/g ∈ OX,x. We
define the order of vanishing of f/g along x to be the difference

a− b,

where f ∈ ma−ma+1 and g ∈ mb−mb+1. Then the order of vanishing
defines a valuation ν of K.
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Definition 8.9. Let A and B be two local rings, with the same field of
fractions. We say that B dominates A if A ⊂ B and mA = mB ∩A.
Now let X be a variety and let ν be a valuation on X. We say that x
is the centre of ν on X if OX,x is dominated by the valuation ring of
ν.

Lemma 8.10. Let R be a local ring which is an integral domain with
field of fractions K. Then R is a valuation ring if and only if it is
maximal with respect to dominance. Every local ring in K is contained
a valuation ring.

The centre, if it exists, is unique. In the example above, the unique
centre is x. It is easy to see, however, that the centre does not determine
the valuation.

Example 8.11. Let S be a smooth surface. Let T −→ S be any se-
quence of blow ups with centre x. Let E be any exceptional divisor with
generic point t ∈ T . Then t determines a valuation ν on T , whence on
S. The centre of ν is x.

Note however that if the centre of a discrete valuation is a divisor,
then there is essentially only one way to define the valuation, as the
order of vanishing. Given this, the next natural question to ask, is if it
is true that every discrete valuation is associated to a divisor.

Definition 8.12. A discrete valuation ν of X is called algebraic if
there is a birational model Y of X such that the centre of ν on Y is a
divisor.

Example 8.13. Consider the affine plane over C. Considering only
the closed points, the curve y = ex, the graph of the exponential func-
tion, defines a discrete valuation of the local ring OS,p, where S = A2

C
and p is the origin. Given f ∈ OS,p we just consider to what order f
approximates the curve above.

Put differently the smooth curve y = ex determines an infinite se-
quence of blow ups with centre p. At each stage we blow up the unique
point where the strict transform of y = ex meets the new exceptional
divisor. The valuation ν then counts how many points the blow up of
f = 0 shares.

It is clear that ν is not an algebraic valuation.

Definition 8.14. Let X be a topological space. We say that x0 is a
specialisation of x1 if x0 ∈ {x1}.

Lemma 8.15. Let R be a valuation ring with quotient field K. Let
T = SpecR and let U = SpecK. Let X be any scheme.

3



(1) To give a morphism U −→ X is equivalent to giving a point
x1 ∈ X and an inclusion of fields k(x1) ⊂ K.

(2) To give a morphism T −→ X is equivalent to giving two points
x0, x1 ∈ X, with x0 a specialisation of x1 and an inclusion of
fields k(x1) ⊂ K, such that R dominates the local ring OZ,x0, in

the subscheme Z = {x1} of X, with its reduced induced struc-
ture.

Proof. We have already seen (1). Let t0 be the closed point of T and let
t1 be the generic point. If we are given a morphism T −→ X, then let
xi be the image of ti. As T is reduced, we have a factorisation T −→ Z.
Moreover k(x1) is the function field of Z, so that there is a morphism
of local rings OZ,x0 −→ R compatible with the inclusion k(x1) ⊂ K.
Thus R dominates OZ,x0 .

Conversely suppose given x0 and x1. The inclusion OZ,x0 −→ R gives
a morphism T −→ SpecOZ,x0 , and composing this with the natural
map SpecOZ,x0 −→ X gives a morphism T −→ X. �

Lemma 8.16. Let f : X −→ Y be a compact morphism of schemes
(that is, for every open affine subsheme U ⊂ Y , f−1(U) is compact).

Then f(X) is closed if and only if it is stable under specialisation.

Proof. Let us in addition suppose that f is of finite type and that X and
Y are noetherian. Then f(X) is constructible by Chevalley’s Theorem,
whence closed. For the general case, see Hartshorne, II.4.5. �

Now we are ready to state:

Theorem 8.17 (Valuative Criterion of Separatedness). Let f : X −→
Y be a morphism of schemes, and assume that X is Noetherian. Then
f is separated if and only if the following condition holds:

For any field K and for any valuation ring R with quotient field K,
let T = SpecR, let U = SpecK and let i : U −→ T be the morphism
induced by the inclusion R ⊂ K. Given morphisms T −→ Y and
U −→ X which makes a commutative diagram

U - X

T

i

?
-

-

Y,

f

?

there is at most one morphism T −→ X which makes the diagram
commute.

Proof. Suppose that f is separated, and that we are given two mor-
phisms h : T −→ X and h′ : T −→ X, which make the diagram com-
mute.
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Then we get a morphism h′′ : T −→ X ×
Y
X. As the restrictions of h

and h′ to U agree, it follows that h′′ sends the generic point t1 of T to
a point of the diagonal ∆(X). Since the diagonal is closed, it follows
that t0 is sent to a point of the diagonal. But then the images of t0
and t1, under h and h′, are the same points x0 and x1 ∈ X. Since the
inclusion k(x1) ⊂ K comes out the same, it follows that h = h′.

Now let us prove the other direction. It suffices to prove that ∆(X) is
closed in X×

Y
X, which in turn is equivalent to proving that it is stable

under specialisation. Suppose that ξ1 ∈ ∆(X) and suppose that ξ0 is
in the closure of {ξ1}. Let K = k(ξ1) and let A be the local ring of ξ0 in
the closure of ξ1. Then A ⊂ K and so there is a valuation ring R which
dominates A. Then by (8.15) there is a morphism T −→ X×

Y
X, where

T = SpecR, sending ti to ξi. Composing with either projection down
to X, we get two morphisms T −→ X, which give the same morphism
to Y and whose restrictions to U are the same, as ξ1 ∈ ∆(X). By
assumption then, these two morphisms agree, and so the morphism
T −→ X ×

Y
X must factor through ∆. But then ξ0 ∈ ∆(X), whence

∆(X) is closed. �

Corollary 8.18. Assume that all schemes are Noetherian

(1) Open and closed immersions are separated.
(2) A composition of separated morphisms is separated.
(3) Separated morphisms are stable under base change.
(4) If f : X −→ Y and f ′ : X ′ −→ Y ′ are two separated morphisms

over a scheme S, then the product morphism f×f ′ : X×
S
X ′ −→

Y ×
S
Y ′ is also separated.

(5) If f : X −→ Y and g : Y −→ Z are two morphisms, such that
g ◦ f is separated, then f is separated.

(6) A morphism f : X −→ Y is separated if and only if Y can be
covered by open subsets Vi such that f−1(Vi) −→ Vi is separated
for each i.

Proof. These all follow from (8.17). For example, consider the proof
of (2). We are given f : X −→ Y and g : Y −→ Z, two separated
morphisms. By assumption we are given two morphisms h : T −→ X
and h′ : T −→ X, as in (8.17). By composition with f , these give two
morphisms k : T −→ Y and k′ : T −→ Y . As g is separated, these
morphisms agree. But then as f is separated, h = h′. �

Now we turn to the notion of properness.
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Definition 8.19. A morphism f : X −→ Y is proper if it is separated,
of finite type, and universally closed.

Example 8.20. The affine line A1
k is certainly separated and of finite

type over k. However it is not proper, since it is not universally closed.
Indeed consider A2

k = A1
k ×

k
A1
k. The image of the hyperbola under

projection down to A1
k is not closed.

Theorem 8.21 (Valuative Criterion of Properness). Let f : X −→ Y
be a morphism of finite type, with X Noetherian. Then f is proper if
and only if for every valuation ring R and for every pair of morphisms
U −→ Y and T −→ Y which form a commutative diagram

U - X

T

i

?
-

-

Y,

f

?

there is a unique morphism h : T −→ X making the diagram commute.

Proof. Suppose that f is proper. Then f is certainly separated, so h, if
it exists, is surely unique. Consider the base change given by T −→ Y ,
and set XT = X ×

Y
T . We get a morphism U −→ XT , applying the

universal property to the morphisms U −→ X and U −→ T .

U - XT
- X

T

f ′

?
- Y.

f

?

Let ξ1 ∈ XT be the image of the point t1 ∈ U . Let Z = {ξ1}. As f
is proper, f ′ is closed and so f ′(Z) ⊂ T is closed. Thus f ′(Z) = T , as
f ′(Z) contains the generic point of T . Pick ξ0 ∈ Z such that f(ξ0) = t0.
Then we get a morphism of local rings R −→ OZ,ξ0 . The function field
of Z is k(ξ1) which by construction is a subfield of K. On the other
hand, R is maximal with respect to dominance in K. Thus R ' OZ,ξ0 .
Hence by (8.15) there is a morphism T −→ XT sending ti to ξi. Now
compose with the natural map XT −→ X.

Now suppose that f satisfies the given condition. Let Y ′ −→ Y
be an arbitrary base change, and let X ′ −→ X be the induced mor-
phism. Pick a closed subset Z ⊂ X ′, imbued with the reduced induced
structure:

Z ⊂ X ′ - X

Y ′

f ′

?
- Y.

f

?
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We want to prove that f(Z) is closed. f is of finite type by assumption,
so that f ′ is of finite type. It suffices to show that f(Z) is closed under
specialisation, by (8.16).

Pick a point z1 ∈ Z and let y1 = f(z1). Suppose that y0 is a
specialisation of y1. Let S be the local ring of the closure of y1 at y0.
Then the quotient field of S is k(y1) which is a subfield of K = k(z1).
Pick a valuation ring R contained in K which dominates S. Then by
(8.15), we get a commutative diagram

U - Z

T

i

?
- Y ′.

?

Composing with the morphisms Z −→ X ′ −→ X and Y ′ −→ Y we
get morphisms U −→ X and T −→ Y . By hypothesis, there is a mor-
phism T −→ X which makes the diagram commute. By the universal
property of a fibre product, this lifts to a morphism T −→ X. As Z is
closed, this factors into T −→ Z. Let z0 be the image of t0. Then z0
maps to y0, as required. �

Corollary 8.22. Assume that all schemes are Noetherian

(1) A closed immersion is proper.
(2) Composition of proper morphisms is proper.
(3) Proper morphisms are stable under base change.
(4) If f : X −→ Y and f ′ : X ′ −→ Y ′ are two proper morphisms

over a scheme S, then the product morphism f×f ′ : X×
S
X ′ −→

Y ×
S
Y ′ is also proper.

(5) If f : X −→ Y and g : Y −→ Z are two morphisms, such that
g ◦ f is proper and g is separated, then f is proper.

(6) A morphism f : X −→ Y is proper iff Y can be covered by open
subsets Vi such that f−1(Vi) −→ Vi is proper for each i.

Proof. These all follow from (8.21). �
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