
4. Images of Varieties

Given a morphism f : X −→ Y of quasi-projective varieties, a basic
question might be to ask what is the image of a closed subset Z ⊂ X.
Replacing X by Z we might as well assume that Z = X.

At first this question seems quite hopeless; indeed our first hope is
that the image of X is always a quasi-projective subvariety. Unfortu-
nately this is definitely not true. For example, take X = Y = A2. Let
π : X −→ Y be the morphism (a, b) −→ (a, ab). Let us determine the
image. Pick (x, y) ∈ A2. If x 6= 0, then take a = x and b = y/x.
Then (a, ab) = (x, y). Thus the image contains the complement of the
x-axis. Now if y 6= 0 and x = 0, then (x, y) is surely not in the image.
However (0, 0) is in the image; indeed it is the image of (0, 0). Thus
the image is equal to the complement of the x-axis union the origin.

In fact, it turns out that this is as bad as it gets. The first case to
deal with, in fact the crucial case, which is of interest in its own right,
is the case when X is projective.

Definition 4.1. Let f : X −→ Y be a function between two topological
spaces. We say that f is proper if f takes closed sets to closed sets.

Theorem 4.2. Every morphism π : X −→ Y of varieties, where X is
projective, is proper.

Definition 4.3. Let i : X −→ Y be a morphism. We say that i is
closed if the image of X is closed. We say that i is a closed embed-
ding if i is closed and i is an isomorphism onto its image.

Definition 4.4. Let π : X −→ Y be a morphism.
We say that π is a projective morphism if it can be factored into

a closed embedding i : X −→ Y × Pn and the projection morphism
Y × Pn −→ Y .

Obvious examples of projective morphisms are blow ups. Also

Lemma 4.5. Every morphism from a projective variety is projective.

Proof. Just take the graph. �

Clearly closed embeddings are proper and the composition of proper
maps is proper. Thus to prove (4.2) it suffices to prove:

Theorem 4.6. Every projective morphism is proper.

Moreover we may assume thatX ⊂ Y×Pn and that we are projecting
onto the first factor. The trick is to reduce to the case n = 1. The idea
is that projective space Pn, via projection, is very close to the product
P1 × Pn−1.
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Definition 4.7. Let π : X −→ Y be a morphism of varieties. We say
that π is a fibre bundle, with fibre F , if we can find a cover of the base
Y , such that over each open subset U of the cover, π−1(U) ' U × F .

Note that if π is a fibre bundle then every fibre of π is surely a copy
of F . It is convenient to denote π−1(U) by X|U .

Lemma 4.8. The graph of the projection map from a point p defines
a morphism Γ −→ Pn−1, which is a fibre bundle, with fibre P1.

Proof. The rational map given by projection from a point p

π : Pn 99K Pn−1

is clearly defined everywhere, except at the point of projection. More-
over this map is clearly constant on any line through p. Thus the
morphism Γ −→ Pn−1 has fibres equal to the lines trough p.

Pick two hyperplanes H1 and H2, neither of which contain p. Under
projection, we may indentify H1 with the base Pn−1. Let V = H1 ∩
H2. Then the image of V is a hyperplane in Pn−1. Let U be the
complement. Projection from V defines a rational map down to P1.
This rational map is an isomorphism on every line l through p which
does not intersect V .

Define a morphism ψ : Γ|U −→ P1 × U ⊂ P1 × Pn−1 via these two
projection maps. It is not hard to see that ψ is an isomorphism. Fixing
H1 and varying H2 it is clear that we get a cover of Pn−1 in this way. �

One nice property of both (4.2) and (4.6) is that they may be checked
locally on the base.

Lemma 4.9. Let Uα be an open cover of Y .
Then π(X) is closed if and only if π(X|Uα) is closed, for every α.

Proof. Clear, since a subset A ⊂ Y is closed if and only if its intersec-
tion with every element of the open cover is closed. �

Lemma 4.10. To prove (4.6) we may assume that n = 1.

Proof. Let X ⊂ Y ×Pn. If X = Y ×Pn then there is nothing to prove,
since the image is the whole of Y . Otherwise pick a point p such that
X is not contained in Y × {p}. Let q : Y × Γ −→ Y × Pn be the blow
up of Y × {p} (equivalently blow up Pn at p and then cross with Y ).
Let X ′ be the strict transform of X. Then the image of X ′ and X in
Y coincide.

Now by (4.8), the morphism Y ×Γ −→ Y factors through Y ×Pn−1.
By induction on n, it suffices to prove that the image of X ⊂ Y × Γ
inside in Y × Pn−1 is closed.
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By (4.9) we are free to replace Y × Pn−1 by any open subset. Then
by (4.8) we may assume Γ = Pn−1 × P1. Replacing Y by Y × Pn−1 we
are done. �

The idea now is to work locally on Y and think of Y × P1 as being
P1 over a funny field.

Lemma 4.11. Let X ⊂ Y × P1 be a closed subset.
Then locally about every point of Y , X is defined by polynomials

F (S, T ), where [S : T ] are homogeneous coordinates on P1 and the
coefficients of F belong to the coordinate ring of Y .

Proof. This is easy. If Y is affine, then we can cover Y × P1 by two
open affine sets Y ×U0 and Y ×U1. In this case X is locally defined, on
each piece, by polynomials f(s) and g(t), where s = S/T and t = T/S
and the coefficients of f and g belong to A(Y ). Since f(s) = g(t) on
Y × (U0 ∩U1) it follows that there is a global polynomial F (S, T ) with
coefficients in A(Y ) which on each piece affine piece reduces to f(s)
and g(t). �

In other words, we only need to consider polynomials F (S, T ) ∈
A(Y )[S, T ]. Given y ∈ Y , let Fy = Fy(S, T ) ∈ K[S, T ] be the polyno-
mial we obtain by subsituting in y ∈ Y to the coefficients.

Lemma 4.12. Let X ⊂ Y × P1.
Then y ∈ π(X) if and only if for every pair of functions F (S, T )

and G(S, T ) ∈ A(Y )[S, T ] vanishing on X, both Fy(S, T ) and Gy(S, T )
have a common zero on {y} × P1.

Proof. One inclusion is clear. So suppose that y /∈ π(X). Pick F (S, T )
that does not vanish on {y}×P1. Then Fy(S, T ) has only finitely many
zeroes. For each such zero pi, we may find Gi(S, T ) such that Gi

y(S, T )
does not vanish at pi. Taking an appropriate linear combination of the
Gi gives us a polynomial G such that Fy and Gy do not have a common
zero. �

Lemma 4.13. To prove (4.6) we may assume that X is defined by two
polynomials F and G.

To finish off, the idea is to use elimination theory.

Definition-Lemma 4.14. Let A be a ring, and let F and G be two
polynomials in A[S, T ], of degrees d and e.
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Let R(F,G) ∈ A be the determinant of the following matrix∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 f1 f2 . . . fd−1 fd . . . . . .
0 f0 f1 f2 . . . fd−1 fd . . .
...

...
...

...
...

...
...

...
0 0 . . . f0 f1 f2 . . . fd
g0 g1 g2 . . . ge−1 ge . . . . . .
0 g0 g1 g2 . . . ge−1 ge . . .
...

...
...

...
...

...
...

...
0 0 . . . g0 g1 g2 . . . ge

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where f0, f1, . . . , fd and g0, g1, . . . , ge are the coefficients of F and G.
Then for every maximal ideal m of A, R̄(F,G) = 0 in the quotient

ring S/m if and only if the two polynomials f̄ and ḡ have a common
zero.

Proof. Since expanding a determinant commutes with passing to the
quotient A/m, we might as well assume that S = K is a field.

Now note that the rows of this matrix correspond to the polynomials
SiT e−1−iF and SjT d−1−jG, where 0 ≤ i ≤ e − 1 and 0 ≤ j ≤ d − 1,
expanded in the standard basis of the vector space Pd+e−1 of polyno-
mials of degree d + e − 1. Thus the determinant is zero if and only
if the polynomials B = {SiT e−1−iF, SjT d−1−jG} are dependent, inside
Pd+e−1.

To finish off then it suffices to prove that this happens only when
the two polynomials share a common zero. Now note that Pd+e−1 has
dimension d + e. Thus the d + e polynomials B are independent if
and only if they are a basis. Suppose that they share a common zero.
Then the space spanned by B is contained in the vector subspace of
all polynomials vanishing at the given point, and so B does not span.
Now suppose that they are dependent. Collecting terms, there are then
two polynomials P and Q of degrees e− 1 and d− 1 such that

PF +QG = 0.

Suppose that d ≤ e. Every zero of G must be a zero of PF . As G has
e zeroes and P has at most e− 1 zeroes, it follows that one zero of G
must be a zero of F . �

Proof of (4.6). By (4.13) it suffices to prove the result when n = 1
and X is defined by two polynomials F and G. In this case π(X) is
precisely given by the resultant of F and G, which is an element of
A(Y ). �

(4.2) has the following very striking consequence.
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Corollary 4.15. Every regular function on a connected projective va-
riety is constant.

Proof. By definition a regular function is a morphism f : X −→ A1.
Now by (4.2) the image of X is closed in A1. The only closed subsets
of A1 are finite sets of points or the whole of A1. On the other hand
f extends in an obvious way to a morphism g : X −→ P1. We haven’t
changed the image, but the image is now also a closed subset of P1.
Thus the image cannot be A1.

Thus the image is a finite set of points. As X is connected, the image
is connected and so the image is a point. �

Corollary 4.16. Let X be a closed and connected subset of an affine
variety.

If X is also projective then X is a point.

Proof. By assumption X ⊂ An. Suppose that X contains at least two
points. Then at least one coordinate must be different. Let f be the
function on An corresponding to this coordinate. Then f restricts to a
non-constant regular function on X, which contradicts (4.15). �

Corollary 4.17. Let X ⊂ Pn be a closed subset and let H be a hyper-
surface.

If X is not a finite set of points, then H ∩X is non-empty.

Proof. Suppose not. Let G be the defining equation of H. Pick F of
degree equal to the degree of G. Then F/G is a regular function on X,
since G is nowhere zero on X. But this contradicts (4.15). �

We can now answer our original question.

Definition 4.18. Let X be a topological space. A subset Z ⊂ X is said
to be constructible if it is the finite union of locally closed subsets.

Note that constructible sets are closed under complements and finite
intersections and unions.

Lemma 4.19. Let X be a Noetherian topological space and let Z be a
subset.

Then Z is constructible if and only if it is of the form

Z = Z0 − (Z1 − (Z2 − · · · − Zk)),
where Zi are closed and decreasing subsets.

Proof. Suppose that Z is constructible. Let Z0 be the closure of Z.
Then Z is dense in Z0 and Z0 is closed. As Z is constructible, it
contains a dense open subset of Z0. Clearly the difference Z0 − Z is
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constructible. Let Z1 be the closure. Then Z1 is a proper closed subset
of Z0. Continuing in this way, we construct a decreasing sequence of
closed subsets,

Z0 ⊃ Z1 ⊃ · · · ⊃ Zk ⊃ . . .

As X is Noetherian this sequence must terminate.
Now suppose that Z is an alternating difference of closed subsets,

Z = Z0 − (Z1 − (Z2 − · · · − Z2k+1)).

Then
Z = (Z0 − Z1) ∪ (Z2 − Z3) ∪ · · · ∪ (Z2k − Z2k+1). �

Theorem 4.20 (Chevalley’s Theorem). Let π : X −→ Y be a mor-
phism of quasi-projective varieties.

Then the image of a constructible set is constructible.

Proof. As the image of a union is the union of the images, it suffices to
prove that the image of a locally closed subset is constructible. Sup-
pose that Z is a locally closed subset. Replacing X by the closure of
Z and Y by the closure of the image, we may assume that π|Z is dom-
inant. Suppose that π(Z) contains an open subset. Replacing X by
the complement of the inverse image, we are then done by Noetherian
induction.

Thus we are reduced to proving that π(Z) contains an open subset.
Replacing X by an open subset, we may assume that X is affine. Re-
placing X by its graph and applying induction on n, we may assume
that Z ⊂ An and that the map is the restriction of the projection map

An −→ An−1

where
(x1, x2, . . . , xn) −→ (x1, x2, . . . , xn−1).

Thus we may assume that Z ⊂ Y ×A1 and that we are projecting onto
Y . Clearly we may replace A1 by P1. Working locally, we may assume
that every closed subset of Y ×P1 is defined by polynomials of the form
F (S, T ).

Let X be the closure of Z and let V be the complement, so that
X = Z − V and both Z and V are closed. Suppose that X = Y × P1.
In this case it suffices to prove that

VY = { y ∈ Y | {y} × P1 ⊂ V },
is contained in a proper closed subset. But V is a proper closed subset
so that there is a polynomial G vanishing on V . In this case, V contains
the whole fibre if and only if every coefficient of Gy vanishes. Thus the
locus VY is contained in the vanishing locus of all the coefficients of G.
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So we may assume that X is a proper closed subset of Y ×P1. Thus
there is a polynomial F vanishing on X. Since X is closed, its image
is closed, whence the whole of Y . It suffices to prove that π(V ) is a
proper closed subset. It is certainly closed, as V is closed. But R(F,G)
is a non-zero polynomial that vanishes on the image. �
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