2. RATIONAL MAPS

It is often the case that we are given a variety X and a morphism
defined on an open subset U of X. As open sets in the Zariski topology
are very large, it is natural to view this as a map on the whole of X,
which is not everywhere defined.

Definition 2.1. A rational map ¢: X --+ Y between quasi-projective
varieties is a pair (f,U) where U is a dense open subset of X and
f: U —Y is a morphism of varieties. Two rational maps (f1,U;) and
(f2, Us) are considered equal if there is a dense open subset V- C UyNUy
such that the two functions fily and fa|y are equal.

It is customary to avoid using the pair notation and to leave U
unspecified. We often say in this case that ¢ is defined on U. Note
that if U and V are two dense open sets, and (f,U), (g, V) represent
the same rational map, then (h,U U V) also represents the same map,
where h is defined in the obvious way. By Noetherian induction, it
follows that there is a largest open set on which ¢ is defined, which is
called the domain of ¢. The complement of the domain is called the
locus of indeterminancy.

One way to get a picture of a rational map, is to consider the graph.

Definition 2.2. Let ¢: X --» Y be a rational map.

The graph of ¢ is the closure of the graph of f, where the pair
(f,U) represents ¢.

The image of ¢ is the image of the graph of ¢ under the second
projection.

Note that the domain of ¢ is precisely the locus where the first
projection map is an isomorphism.

Definition 2.3. Let ¢: X --» Y and: Y --+ Z be two rational maps.
Suppose that ¢ = (f,U) and ¢ = (g,V) and that f~(V) is dense (if
X is irreducible this is equivalent to the requirement that f(U) NV is
non-empty). Then we may define the composition of ¢ and ¢ by taking

the pair (go f, f~1(V)).

Note that in general, we cannot compose rational maps. The problem
might be that the image of the first map might lie in the locus where
the second map is not defined. However there will never be a problem
if X is irreducible and ¢ is dominant:

Definition 2.4. We say that ¢ is dominant if the the image of ¢ is

dense in'Y.
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Note that this gives us a category, the category of irreducible varieties
and dominant rational maps.

Definition 2.5. We say that a dominant rational map ¢: X --+Y of
wrreducible quasi-projective varieties is birational if it has an inverse.
In this case we say that X and Y are birational. We say that X 1s
rational if it is birational to P".

It is interesting to see an example. Let ¢: P2 --» P? be the map
(X:Y:Z] —[YZ:XZ:XY].

This map is clearly a rational map. It is called a Cremona trans-
formation. Note that it is a priori not defined at those points where
two coordinates vanish. To get a better understanding of this map, it
is convenient to rewrite it as

(X:Y:Zl —[1/X:1/Y :1/Z].

Written as such it is clear that this map is an involution, so that it is
in particular a birational map.

It is interesting to check whether or not this map really is well defined
at the points [0:0:1],[0:1:0] and [1:0:0]. To do this, we need to
look at the graph.

Consider the following map,

A% -5 Al

which assigns to a point p € A? the slope of the line connecting the
point p to the origin,

Now this map is not defined along the locus where z = 0. Replacing
Al with P! we get a map

(z,y) — [z :y].
Now the only point where this map is not defined is the origin. We
consider the graph,
I c A% x P!,

Consider how the graph sits over A2, Outside the origin, the first
projection is an isomorphism. Over the origin, the graph is contained
in a copy of the image, that is, P!. Consider any line y = tx, through
the origin. Then this line, minus the origin, is sent to the point with
slope t. It follows that the closure of this line is sent to the point with
slope t. Varying t, it follows that any point of the fibre over P! is a

point of the graph.
2



Thus the morphism p: I' — A? is an isomorphism outside the origin
and contracts a whole copy of P! to a point. For this reason, we call p
a blow up.

Definition 2.6. Let ¢: X --» P* be a rational map, which is given
locally by fi, fo,..., fx. Let I be the ideal spanned by fi, fa,..., fr.
The induced morphism p: I' — X is called the blow up of the ideal
I.

Clearly p is always birational, as it is an isomorphism outside V' (I).

In our case I = (z,y), the maximal ideal of p, so that we call p
the blow up of a point. Suppose we have coordinates [S : T] on PL.
Then outside of the origin, the graph satisfies the equation 2T = yS.
Thus the closure must satisfy the same equation. Since this equation
determines the graph outside the origin, in fact the graph is defined by
this equation (as the whole fibre over the origin lives in the graph, we
don’t need anymore equations).

The inverse image of the origin is called the exceptional divisor.

Definition 2.7. Let m: X — Y be a birational morphism. The locus
where T is not an isomorphism is called the exceptional locus. If
V CY, the inverse image of V is called the total transform. Let Z
be the image of the exceptional locus. Suppose that V' is not contained

in Z. The strict transform of V is the closure of the inverse image
of V.- Z.

It is interesting to compute the strict transform of some planar
curves. We have already seen that lines through the origin lift to curves
that sweep out the exceptional divisor. In fact the blow up separates
the lines through the origin. These are then the fibres of the second
morphism.

Let us now take a nodal cubic,

y? =2+,

We want to figure out its strict transform, so that we need the inverse
image in the blow up. Outside the origin, there are two equations to
be satisfied,

y =2+ a2 and xT =yS.
Passing to the coordinate patch y = xt, where t = T'/S, and substitut-
ing for y in the first equation we get
o — 2 -2t =2 - —1).

Now if z = 0, then y = 0, so that in fact locally z = 0 is the equation

of the exceptional divisor. So the first factor just corresponds to the
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exceptional divisor. The second factor will tell us what the closure of
our curve looks like, that is, the strict transform. Now over the origin,
x =0, so that t> = 1 and t = 1. Thus our curve lifts to a curve which
intersects the exceptional divisor in two points. (If we compute in the
coordinate patch x = sy, we will see that the curve does not meet the
point at infinity). These two points correspond to the fact that the
nodal cubic has two tangent lines at the origin, one of slope 1 and one
of slope —1.

Now consider what happens for the cuspidal cubic, y* = 23. In this

case we get

(wt)* — 2° = 2*(t* — 2).
Once again the factor of x? corresponds to the fact that the inverse
image surely contains the exceptional divisor. But now we get the
equation t? = 0, so that there is only one point over the origin, as one
might expect from the geometry.

Let us go back to the Cremona transformation. To compute what
gets blown up and blown down, it suffices to figure out what gets
blown down, by symmetry. Consider the line X = 0. If bc # 0, the
point [0 : b : ] gets mapped to [0 : 0 : 1]. Thus the strict transform of
the line X = 0 in the graph gets blown down to a point. By symmetry
the strict transforms of the other two lines are also blown down to
points. Outside of the union of these three lines, the map is clearly an
isomorphism.

Thus the involution blows up the three points [0: 0 : 1], [0 : 1 : 0],
and [1:0: 0] and then blows down the three disjoint lines. Note that
the three exceptional divisors become the three new coordinate lines.

One of the most impressive results of the nineteenth century is the
following characterisation of the birational automorphism group of P2

Theorem 2.8 (Noether). The birational automorphism group is gen-
erated by a Cremona transformation and PGL(3).

This result is very deceptive, since it is known that the birational
automorphism group is, by any standards, very large.
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