
16. Cubics II

It turns out that the question of which varieties are rational is one
of the subtlest geometric problems one can ask. Since the problem of
determining whether a variety is rational or not is so delicate, various
intermediary notions have been introduced.

Definition 16.1. We say that a variety X is unirational if there is
a dominant rational map Pnk 99K X.

Theorem 16.2. Every smooth cubic threefold V ⊂ P4 is unirational.

Note some basic properties of unirational varieties.

Lemma 16.3. Let X be a variety over k. The following are equivalent:

(1) X is unirational.
(2) There is a dominant generically finite morphism φ : Y −→ X,

where Y is rational.
(3) The function field of X is contained in a purely transcendental

field extension of k.
(4) There is a finite extension of the function field of X which is a

purely transcendental field extension of k.

Proof. The fact that (1) and (3) are equivalent, follows from the equiv-
alence of categories between dominant rational maps and inclusions of
function fields, and (4) follows from (2) in a similar fashion.

So suppose that φ : Pnk 99K X is a dominant rational map. Replacing
Pn by the normalisation of the graph of φ, we may assume that there a
quasi-projective variety Y and a dominant morphism Y −→ X. If the
dimension of the generic fibre is greater than zero, then pick a hyper-
plane H ⊂ Pn, whose inverse image in Y dominates X. Continuing in
this way, we reduce to the case where is generically finite. �

Thus to prove (16.2) we are looking for a dominant rational map
P3 99K V . The trick is to consider low degree rational curves on V .

Lemma 16.4. Every smooth cubic threefold V be in P4 contains a two
dimensional family F of lines.

Proof. Consider the incidence correspondence

Σ = { (l, H) | l ⊂ S = H ∩ V } ⊂ G(1, 3)× P4.

This has two morphisms, p : Σ −→ G(1, 3) and q : Σ −→ P3. Let H be
a general hyperplane in P4. Then S = H ∩V is a smooth cubic surface
in P3. But then we have already seen that S contains a finite number
of lines. Thus the minimum dimension of the fibres of p is zero. It
follows that Σ has dimension four.
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If we fix l then there is a two dimensional family of hyperplanes con-
taining l (in fact a copy of P2). Since the fibres of q are two dimensional,
it follows that F1 = q(Σ) has dimension two. �

It is interesting to observe that there is a four dimensional family of
conics. If you fix a line l and look at the family of planes containing
the line then this will cut the cubic in a plane cubic curve. Part of
this curve is the line l, and the residual curve is a conic. The family
of planes containing the line is a copy of P2 and so a four dimensional
family of conics.

The idea to prove (16.2) is to exploit the family of conics residual to
a line.

Definition 16.5. A conic bundle is a projective morphism, π : X −→
S, between quasi-projective varieties, where the fibres are conics in P2.
A rational conic bundle, is any morphism, which is a conic bundle
over an open subset of the base.

Of course the fibres of any conic bundle have three types

• a smooth conic,
• a pair of lines,
• a double line.

Note that a morphism is a rational conic bundle if and only if the
generic fibre is a smooth conic in P2

K , whereK is the function field of the
base. We will change our conventions a little; for now on in this section
a variety is a separated scheme of finite type over a field, not necessarily
algebraically closed. If the groundfield is not algebraically closed, then
this question can become very tricky, even in low dimensions.

Lemma 16.6. Let π : X −→ S be a morphism of quasi-projective va-
rieties.

If the generic fibre is rational and S is rational then X is rational.

Proof. By assumption the function field of S is a purely transcenden-
tal extension of the groundfield k, K = K(S) ' k(x1, x2, . . . , xm).
Equivalently the residue field of the generic point η of S is purely tran-
scendental over k. Let Xη be the generic fibre. The function field of
Xη is a purely transcendental extension of K. This is the residue field
of the generic point ξ of Xη, which is also the residue field of X.

Thus the function field of X is a purely transcendental extension of
a purely transcendental extension, so that it is a purely transcendental
extension of k. Thus X is rational. �

Lemma 16.7. Let V ⊂ P4 be a smooth cubic.
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Then the blow up of V along a line is a rational conic bundle over
P2.

Definition 16.8. A k-rational point of a scheme X over S is any
point which is the image of a morphism Spec k −→ X over S. The set
of all k-rational points is denoted X(k).

In other words a k-rational point is simply a point whose residue
field is a subfield of k.

Example 16.9. Let X = A1
R. Then p = 〈x2 + a〉 ∈ X, where a ∈ R

and a > 0, corresponds to two C-valued points. Indeed, there are two
scheme maps

SpecC −→ X,

whose image is p, corresponding to the fact that there are two auto-
morphisms of SpecC over SpecR, given by the identity and complex
conjugation.

Lemma 16.10. Let C ⊂ P2
k be a smooth conic, over a field k.

Then C ' P1
k if and only if C contains a k-rational point

Proof. One direction is clear as P1
k certainly contains k-rational points.

Now suppose that C contains a k-rational point. After applying
an element of PGL(3, k), we may assume that this point is [0 : 0 :
1]. Consider projection from this point. This defines a morphism
C − [0 : 0 : 1] −→ P1, which is surely defined over k (indeed it is the
restriction of [x : y : z] −→ [x : y]). It is then straightforward to check
that this morphism extends to an isomorphism. �

Example 16.11. The conic C = V (x2 + y2 − z2) ⊂ P2
R is not rational

over SpecR.

Definition 16.12. Let π : X −→ S be a morphism of schemes. A
section of π is a morphism σ : S −→ X such that σ ◦π is the identity.
A rational section is a section defined on some open subset U of S.

Lemma 16.13. Let π : X −→ S be a morphism of integral schemes, of
finite type. Then picking a rational section of π is equivalent to picking
a rational point of the generic fibre.

Proof. Let K be the function field of S. We may as well assume that
both S = SpecA and X = SpecB are affine, so that K is the field of
fractions of A. The generic fibre has coordinate ring B ⊗

A
K. Suppose

that we have a rational section. Then we may as well assume that
we have a section. But this is equivalent to a ring homomorphism
B −→ A. In turn this induces a ring homomorphism B ⊗

A
K −→ K
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which is equivalent to a morphism SpecK −→ Xξ, where ξ is the
generic point of S. But this is exactly the same as a rational point of
the general fibre.

Now suppose that we have a rational point of the generic fibre. This
is equivalent to a ring homorphism B ⊗

A
K −→ K. Since we have

a morphism of finite type, B is a finitely generated A-algebra. Pick
generators b1, b2, . . . , bk. Denote the image of bi in K by ci/di, where
ci and di are elements of A. Passing to the open affine subset Ud of S,
where d is the product d1 · d2 · · · · · dk, we may assume that di = 1, so
that we get a morphism B −→ A. But this is equivalent to a section
of π. �

Proposition 16.14. Let π : X −→ S be a rational conic bundle, be-
tween two varieties, over an algebraically closed field k. Let T ⊂ X be
a subvarety of X which dominates S.

(1) If T is unirational, then so is X.
(2) If T −→ S is birational and T is rational, then so is X.

Proof. Consider the base change T −→ S of X. Let Y be a component
of the base change of maximal dimension, which dominates X. Then
Y −→ T is a conic bundle. Moreover, there is a natural morphism
T −→ Y which is a section. Possibly base changing further, we may
assume that the base is rational, and that there is a rational section.
Thus it suffices to prove (2).

Consider the generic fibre. By assumption it is a smooth conic in P2
K ,

where K is not algebraically closed. The rational section implies that
this conic has a rational point. But then this conic is isomorphic to P1

K .
The function field of this conic is then K(t). The generic point of X is
also the ceneric point of the generic fibre. It follows that the function
field of X is isomorphic to K(t). Since K is purely transcendental over
k the groundfield, this implies that the field of fractions of X is purely
transendental over k. But then X is rational. �

Proof of (16.2). Let V be a smooth cubic threefold and let l be a line
in V and let X be the blow up of V along l, f : X −→ V . Then there
is a conic bundle π : X −→ P2. Let E be the excpetional divisor of the
blow up. Then E is a P1-bundle over P1. Thus E is rational. But E
dominates P2 and we are done by (16.14). �

In fact E −→ P2 is a two to one map.

Question 16.15 (Lüroth’s problem). Is every unirational variety ra-
tional?
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Note that one way to restate Lüroth’s problem is to ask if every sub-
field of a purely transcendental field extension is purely transcendental.
It turns out that the answer is yes in dimension one, in all character-
istics. This is typically a homework problem in a course on Galois
Theory. There is also a simple geometric proof of this fact (essentially
the Riemann-Hurwitz formula). In dimension two the problem is al-
ready considerably harder, and it is false if one allows inseparable field
extensions.

In dimension three it was shown to be false even in characteristic
zero, in 1972, using three different methods.

One proof is due to Artin and Mumford. It had been observed by
Serre that the cohomology ring of a smooth unirational threefold is in-
distinguishable from that of a rational variety (for P3 one gets Z[x]/〈x3〉
and the cohomology ring varies in a very predictable under blowing up
and down) except possibly that there might be torsion in H3(X,Z).
They then give a reasonably elementary construction of a threefold
with non-zero torsion in H3.

Another proof is due to Clemens and Griffiths. (16.2) implies that
every smooth cubic hypersurface in P4 is unirational. On the other
hand they prove that some smooth cubics are not rational. A lot of
the geometry of the cubic is controlled by the geometry of the Fano
surface of lines.

The third proof is due to Iskovskikh and Manin. They prove that
every smooth quartic in P4 is not rational. On the other hand, some
quartics are unirational. In fact they show, in an amazing tour de force,
that the birational automorphism group of a smooth quartic is finite.
Clearly this means that a smooth quartic is never rational.

Since it is so hard to distinguish between rational and unirational,
yet another closely related notion has been introduced.

Definition 16.16. Let X be a variety, over an algebraically closed
field of characteristic zero. We say that X is rationally connected
if for two general points x and y of X, we may find a rational curve
connecting x and y.

One convenient way to restate this condition, is that for two general
points x and y, we may find a morphism

f : P1
k −→ X,

such that f(0) = x and f(∞) = y. Indeed the nonconstant image of
P1
k is always birational to P1

k.
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It is interesting to consider what happens in higher dimension. The
space of cubic fourfolds X ⊂ P5 is a copy of projective space of dimen-
sion (

3 + 5

3

)
− 1 = 55.

Every cubic fourfold is unirational. Some cubic fourfolds are rational.
For example, it is possible to write down smooth cubic fourfolds X
which contain a pair of skew planes, L and M . This defines a rational
map

φ : L×M 99K X,
which assigns to a point (p, q) the point of intersection of the line 〈p, q〉
with X − (L ∪M). The rational map

ψ : X 99K L×M,

which assigns to every point r the point (p, q), where p is the inter-
section of the 3-plane 〈r,M〉 with L and q is the intersection of the
3-plane 〈r, L〉 with M , is the inverse of φ. Thus X is birational to

L×M = P2 × P2 ' P4

The locus of cubics which contain a pair of skew planes has codimension
two in P55. One can also write down other configurations of subvarieties
of X which guarantee that X is rational.

Conjecture 16.17. The locus of smooth rational cubic fourfolds inside
the open subset of P55 consisting of all smooth cubics is a countable
union of closed subsets of codimension two.

In particular there are smooth irrational cubic fourfolds.

It is interesting to note the following

Theorem 16.18. Fix a positive integer d.
Then there is a positive integer n0 such that if n ≥ n0 then every

smooth hypersurface of degree d in Pn is unirational.

By contrast, there is no example of smooth hypersurface of degree
d ≥ 4 which is rational.
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