15. Cubics I

In this section we give a geometric application of some of the ideas of the previous sections. Recall the definition of a rational variety.
Definition 15.1. A variety X over $\operatorname{Spec} k$ is rational if it birational to \mathbb{P}_{k}^{n}, for some n.
Theorem 15.2. Every smooth cubic $C \subset \mathbb{P}^{2}$ is irrational.
We will prove (15.2) later.
Theorem 15.3. Every smooth cubic surface $S \subset \mathbb{P}^{3}$ is rational.
The key to the proof of 15.3 is the following celebrated:
Theorem 15.4. Every smooth cubic surface $S \subset \mathbb{P}^{3}$ contains twenty seven lines.
Example 15.5. Let $S \subset \mathbb{P}^{3}$ be the cone over a cubic curve $C \subset \mathbb{P}^{2}$. Then S contains infinitely many lines.
Lemma 15.6. Every cubic surface $S \subset \mathbb{P}^{3}$ contains a line.
Proof. A cubic is specified by choosing the coefficients of a homogeneous cubic in four variables of which there are $\binom{6}{3}=20$; the space of all cubics is therefore naturally parametrised by \mathbb{P}^{19}. Consider the incidence correspondence

$$
\Sigma=\left\{(l, F) \in \mathbb{G}(1,3) \times \mathbb{P}^{19} \mid l \subset V(F)\right\} \subset \mathbb{G}(1,3) \times \mathbb{P}^{19}
$$

This is a closed subset of $\mathbb{G}(1,3) \times \mathbb{P}^{19}$ and the two natural projections $f: \Sigma \longrightarrow \mathbb{G}(1,3)$ and $g: \Sigma \longrightarrow \mathbb{P}^{19}$ are proper, since they are projective.

Let $l \in \mathbb{G}(1,3)$ and consider $f^{-1}(l)$. This is the space of cubics containing the line l. There are two ways to figure out what the fibre looks like.

One can change coordinates so that $l=V\left(X_{2}, X_{3}\right)$, so that the points of l are $[a: b: 0: 0]$. In this case the coefficients of $X^{3}, X^{2} Y, X Y^{2}$ and Y^{3} must all vanish. The fibre is a copy of a linear subspace of dimension 15 in \mathbb{P}^{19}.

Aliter: Pick four distinct points p_{1}, p_{2}, p_{3} and p_{4} of l. Suppose $F\left(p_{i}\right)=0$, for $1 \leq i \leq 4$. Then $\left.F\right|_{l}$ is a cubic polynomial in two variables, vanishing at four points. Thus $\left.F\right|_{l}$ is the zero polynomial. It follows that $l \subset V(F)$ if and only if F vanishes at p_{i}, for $1 \leq i \leq 4$.

The condition that $F\left(p_{i}\right)=0$ imposes one linear constraint. One can check that these four points impose independent conditions, so that that the space of cubics containing all four points is a linear subspace of dimension 15 .

Either way, Σ fibres over an irreducible base with irreducible fibres of the same dimension. It follows that Σ is irreducible of dimension $4+15=19$. It suffices then to exhibit a single cubic with finitely many lines, since then the morphism g must be dominant, whence surjective. It is a fun exercise to compute the twenty seven lines on $X^{3}+Y^{3}+Z^{3}+T^{3}=0$.

Lemma 15.7. If $S \subset \mathbb{P}^{3}$ is a smooth cubic surface and $l \subset S$ is a line then there are ten lines meeting l.

In particular S contains two skew lines.
Proof. Consider the planes $H \subset \mathbb{P}^{3}$ containing l. Then $H \cap S=l \cup C$, where $C \subset H \simeq \mathbb{P}^{2}$ is a plane curve of degree two.

First observe that C is never a double line n. Indeed, if F and G are the linear polynomials which define l and F and H are the linear polynomials defining n, so that $F=0$ is the plane spanned by l and n, then the equation of S has the form

$$
F Q+G H^{2},
$$

for some quadratic polynomial Q. But then S is singular at the two points where $F=H=Q=0$ (just compute partials).

Suppose that m is a line that intersects l. Then $C=m \cup n$, where n is another line, which also meets l. Thus lines that intersect l come in concurrent pairs and we just have to show that there are five such pairs.

We may suppose that l is given by $Z=T=0$. Then S is defined by an equation of the form

$$
A X^{2}+2 B X Y+C Y^{2}+2 D X+2 E Y+F
$$

where A, B, C, D, E and F are homogeneous polynomials in Z and T.

The pencil of planes containing l is given by $Z=\lambda T$. Note that $C=C_{\lambda}$ is a pair of lines if and only if C is singular. C_{λ} is singular if and only if the determinant

$$
\left|\begin{array}{lll}
A & B & D \\
B & C & E \\
D & E & F
\end{array}\right|
$$

is zero. The determinant is a homogeneous polynomial of degree 5 in Z and T and so it suffices to show it has no repeated roots.

Supppose that $Z=0$ is a root. There are two cases. If the singular point s of C_{0} is not a point of l then we may assume that C_{0} is given by $X Y=0$. Then every entry of the matrix above is divisible by Z,
except B. On the other hand, as s is not a singular point of S it follows that Z^{2} does not divide F. Thus Z^{2} does not divide the determinant.

If s is a point of l then we may assume that C_{0} is given by $X^{2}-T^{2}=0$ and one can check that Z^{2} does not divide the determinant.

Proof of (15.4). We just prove that S contains a pair of skew lines. (15.6) implies that S contains at least one line l. (15.7) implies that there are ten other lines meeting l. Pick one of them l^{\prime}. Of the ten lines meeting l^{\prime}, at most one of them intersects l. Thus we may find a line m meeting l^{\prime} not intersecting l.
Proof of (15.3). By assumption S contains two skew lines l and m. Define a rational map

$$
\phi: l \times m \rightarrow S
$$

by sending the point (p, q) to the intersection of the line $n=\langle p, q\rangle$ with $S-(l \cup m)$. Since a cubic intersects a typical line in three points, and the line n intersects S at $p \in l$ and $q \in m$, there is an open subset of $l \times m$ such that the line n intersects S at one further point $r=\phi(p, q)$.

Define a rational map

$$
\psi: S \rightarrow l \times m
$$

by sending $r \in S-(l \cup m)$ to (p, q), where p is the intersection point of the plane $\langle p, m\rangle$ with l and q is the intersection point of the plane $\langle p, l\rangle$ with m.

It is easy to check that ϕ and ψ are inverse. It follows that ϕ is birational. As $\mathbb{P}^{1} \times \mathbb{P}^{1} \simeq l \times m$ is rational, S is rational.

