
15. Cubics I

In this section we give a geometric application of some of the ideas
of the previous sections. Recall the definition of a rational variety.

Definition 15.1. A variety X over Spec k is rational if it birational
to Pnk , for some n.

Theorem 15.2. Every smooth cubic C ⊂ P2 is irrational.

We will prove (15.2) later.

Theorem 15.3. Every smooth cubic surface S ⊂ P3 is rational.

The key to the proof of (15.3) is the following celebrated:

Theorem 15.4. Every smooth cubic surface S ⊂ P3 contains twenty
seven lines.

Example 15.5. Let S ⊂ P3 be the cone over a cubic curve C ⊂ P2.
Then S contains infinitely many lines.

Lemma 15.6. Every cubic surface S ⊂ P3 contains a line.

Proof. A cubic is specified by choosing the coefficients of a homoge-
neous cubic in four variables of which there are

(
6
3

)
= 20; the space

of all cubics is therefore naturally parametrised by P19. Consider the
incidence correspondence

Σ = { (l, F ) ∈ G(1, 3)× P19 | l ⊂ V (F ) } ⊂ G(1, 3)× P19.

This is a closed subset of G(1, 3) × P19 and the two natural projec-
tions f : Σ −→ G(1, 3) and g : Σ −→ P19 are proper, since they are
projective.

Let l ∈ G(1, 3) and consider f−1(l). This is the space of cubics
containing the line l. There are two ways to figure out what the fibre
looks like.

One can change coordinates so that l = V (X2, X3), so that the points
of l are [a : b : 0 : 0]. In this case the coefficients of X3, X2Y , XY 2

and Y 3 must all vanish. The fibre is a copy of a linear subspace of
dimension 15 in P19.

Aliter: Pick four distinct points p1, p2, p3 and p4 of l. Suppose
F (pi) = 0, for 1 ≤ i ≤ 4. Then F |l is a cubic polynomial in two
variables, vanishing at four points. Thus F |l is the zero polynomial. It
follows that l ⊂ V (F ) if and only if F vanishes at pi, for 1 ≤ i ≤ 4.

The condition that F (pi) = 0 imposes one linear constraint. One can
check that these four points impose independent conditions, so that
that the space of cubics containing all four points is a linear subspace
of dimension 15.
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Either way, Σ fibres over an irreducible base with irreducible fibres
of the same dimension. It follows that Σ is irreducible of dimension
4 + 15 = 19. It suffices then to exhibit a single cubic with finitely
many lines, since then the morphism g must be dominant, whence
surjective. It is a fun exercise to compute the twenty seven lines on
X3 + Y 3 + Z3 + T 3 = 0. �

Lemma 15.7. If S ⊂ P3 is a smooth cubic surface and l ⊂ S is a line
then there are ten lines meeting l.

In particular S contains two skew lines.

Proof. Consider the planes H ⊂ P3 containing l. Then H ∩ S = l ∪C,
where C ⊂ H ' P2 is a plane curve of degree two.

First observe that C is never a double line n. Indeed, if F and G
are the linear polynomials which define l and F and H are the linear
polynomials defining n, so that F = 0 is the plane spanned by l and n,
then the equation of S has the form

FQ+GH2,

for some quadratic polynomial Q. But then S is singular at the two
points where F = H = Q = 0 (just compute partials).

Suppose that m is a line that intersects l. Then C = m ∪ n, where
n is another line, which also meets l. Thus lines that intersect l come
in concurrent pairs and we just have to show that there are five such
pairs.

We may suppose that l is given by Z = T = 0. Then S is defined by
an equation of the form

AX2 + 2BXY + CY 2 + 2DX + 2EY + F,

where A, B, C, D, E and F are homogeneous polynomials in Z and
T .

The pencil of planes containing l is given by Z = λT . Note that
C = Cλ is a pair of lines if and only if C is singular. Cλ is singular if
and only if the determinant ∣∣∣∣∣∣

A B D
B C E
D E F

∣∣∣∣∣∣
is zero. The determinant is a homogeneous polynomial of degree 5 in
Z and T and so it suffices to show it has no repeated roots.

Supppose that Z = 0 is a root. There are two cases. If the singular
point s of C0 is not a point of l then we may assume that C0 is given
by XY = 0. Then every entry of the matrix above is divisible by Z,
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except B. On the other hand, as s is not a singular point of S it follows
that Z2 does not divide F . Thus Z2 does not divide the determinant.

If s is a point of l then we may assume that C0 is given by X2−T 2 = 0
and one can check that Z2 does not divide the determinant. �

Proof of (15.4). We just prove that S contains a pair of skew lines.
(15.6) implies that S contains at least one line l. (15.7) implies that
there are ten other lines meeting l. Pick one of them l′. Of the ten
lines meeting l′, at most one of them intersects l. Thus we may find a
line m meeting l′ not intersecting l. �

Proof of (15.3). By assumption S contains two skew lines l and m.
Define a rational map

φ : l ×m 99K S,
by sending the point (p, q) to the intersection of the line n = 〈p, q〉 with
S − (l ∪m). Since a cubic intersects a typical line in three points, and
the line n intersects S at p ∈ l and q ∈ m, there is an open subset of
l×m such that the line n intersects S at one further point r = φ(p, q).

Define a rational map

ψ : S 99K l ×m,
by sending r ∈ S − (l ∪m) to (p, q), where p is the intersection point
of the plane 〈p,m〉 with l and q is the intersection point of the plane
〈p, l〉 with m.

It is easy to check that φ and ψ are inverse. It follows that φ is
birational. As P1 × P1 ' l ×m is rational, S is rational. �
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