
13. Dimension of schemes

Our aim in this section is give a formal definition of the dimension of
a variety, to compute the dimension in specific examples and to prove
some of the interesting properties of the dimension.

Definition 13.1. Let X be a topological space.
The dimension of X is equal to the supremum of the length n of

strictly increasing sequences of irreducible closed subsets of X,

∅ 6= Z0 ⊂ Z1 ⊂ · · · ⊂ Zn.

We will call a chain maximal if it cannot be extended to a longer
chain.

Note that if X is Noetherian then the dimension of X is, by defi-
nition, equal to the maximal dimension of an irreducible component.
Note that also that the dimension of X is equal to the dimension of
any dense open subset, and that the dimension of any subset is at most
the dimension of X.

In general this notion of dimension is a little unwieldy, even for Noe-
therian topological spaces (in fact, it is pretty clear that this definition
is useless for any topological space that is not Noetherian or at least
close to Noetherian).

For quasi-projective varieties it is much better behaved. For example,

Theorem 13.2. Let X be a quasi-projective variety.
Then the dimension of X is equal to the length of any maximal chain

of irreducible subvarieties.

Definition 13.3. Let f : X −→ I be a map from a topological space to
an ordered set I. We say that f is upper semi-continuous, if for
every a ∈ I, the set

{x ∈ X | f(x) ≥ a },
is closed in X.

The key result is:

Theorem 13.4. Let π : X −→ Y be a dominant morphism of quasi-
projective varieties. Then the function

µ : X −→ N,
is upper semi-continuous, where µ(p) is the local dimension of the fibre
Xp = π−1(π(p)) at p. Moreover if X0 is any irreducible component of
X and Y0 is the closure of the image, we have

dim(X0) = dim(Y0) + µ0,

where µ0 is the minimum value of µ on X0.
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Note that semi-continuity of µ is equivalent to saying that the di-
mension can jump up on closed subsets, but not down. For example,
consider what happens for the blow up of a point. In this case, µ is
equal to zero outside of the exceptional divisor and it jumps up to one
on the exceptional divisor.

We will prove these two results in tandem. Let d = dimX. We will
need an intermediary result, which is of independent interest:

Lemma 13.5. Assume (13.2)d.
If X ⊂ Pn is a closed subset of dimension d and H ⊂ Pn is a

hypersurface then

dim(X ∩H) ≥ dim(X)− 1,

with equality if and only if H ∩X does not contain a component of X
of maximal dimension.

Proof. We might as well assume that X is irreducible and that H does
not contain X. Pick a maximal chain of irreducible subvarieties of X
which contains a component Y of X ∩H,

∅ 6= Z0 ⊂ Z1 ⊂ · · · ⊂ Ze.

Then X = Ze and Y = Zi, some i. As we are assuming (13.2)d, d = e
and dimY = i.

Suppose Z 6= X is irreducible and

Y ⊂ Z ⊂ X.

I claim that Z = Y . To see this, if we pass to an open affine subset then
Z and Y are defined by ideals J ⊂ I ⊂ A, where A is the coordinate
ring, I = 〈f〉 is principal and J is a prime ideal. Pick g ∈ J , g 6= 0.
Write g = g1g2 . . . gk as a product of irreducibles. As J is a prime ideal,
gi ∈ J for some i. As gi ∈ I, gi = uf , and u must be a unit as gi is
irreducible. But then I = J and Z = Y .

It follows that i = d− 1 and so dimY = d− 1. �

Lemma 13.6. (13.2)d−1 implies (13.4)d.

Proof. The result is local on X, so we might as well assume that X
and Y are irreducible and affine. We first show that

µ(p) ≥ dim(X)− dim(Y ),

for every point of p ∈ X. If e = dim(Y ) = dim(X) = d there is noth-
ing to prove. So we may assume that e = dim(Y ) < d = dim(X). Let
q = π(p). By (13.5) we may embed Y ⊂ An and pick a hyperplane
q ∈ H ⊂ Y such that dim(H ∩ Y ) = dim(Y ) − 1. By an obvious

2



induction, we may pick dim(Y ) hyperplanes H1, H2, . . . , He, whose in-
tersection is a finite set containing q. Working locally about q, we may
assume that q is the only point in the intersection. Let f1, f2, . . . , fe
be the corresponding polynomials. Then the fibre Xp is defined by the
polynomials g1, g2, . . . , ge, where gi = π∗fi. So

dim(Xp) ≥ dim(X)− dim(Y ),

as required.
To finish the proof, by Noetherian induction applied to X, it suffices

to prove that there is an open subset U of X such that

µ(p) ≤ dim(X)− dim(Y ),

for every p ∈ U . As usual, we may assume that X ⊂ Y ×An and that
π is projection onto the second factor. Factoring π into the product of
n projections, we may assume that n = 1, by induction on n. We may
assume that X ⊂ Y ×A1 is closed. If X = Y ×A1 then µ0 = 1 and it is
clear that dimX ≥ dimY + 1. As we have already proved the reverse
inequality, dimX = dimY + 1.

Otherwise there is a fibre of dimension zero. As X is a proper subset
of Y , dimX = dimY and µ0 = 0. Working locally, we may assume
that X is defined by polynomials of the form F ∈ A(Y )[S, T ]. Further
there is a polynomial F ∈ A(Y )[S, T ] vanishing on X, such that Fy is
not the zero polynomial, for at least one y ∈ Y . In this case, the set
of points where Fy is not the zero polynomial, is an open subset of Y ,
and for any point in this open subset, the fibre has dimension zero. �

Lemma 13.7. (13.4)d implies (13.2)d.

Proof. We may assume that X is affine. Pick a finite projection down
to An. As we are assuming (13.4)d, n = d. It clearly suffices to prove
the result for X = Ad. Consider projection down to Ad−1. Given a
maximal chain of irreducible subsets

∅ 6= Z0 ⊂ Z1 ⊂ · · · ⊂ Zn = Ad,

let

∅ 6= Y0 ⊂ Y1 ⊂ · · · ⊂ Yn = Ad−1,

be the image in Ad−1. Then there is an index i such that Zi contains the
general fibre and Zi−1 does not contain the general fibre. Other than
that, Yj determines Zj and the result follows by induction on d. �

Proof of (13.2) and (13.4). Immediate from (13.6) and (13.7). �
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Corollary 13.8. Let π : X −→ Y be a surjective and projective mor-
phism of quasi-projective varieties. Then the function

λ : Y −→ N,
is upper semi-continuous, where λ(q) is the dimension of the fibre Xq =
π−1(q) at q. Moreover if X0 is any irreducible component of X, with
image Y0, then we have

dim(X0) = dim(Y0) + λ0,

where λ0 is the minimum value of λ on Y0.

Proof. π is proper as it is projective. Therefore the set

{ y ∈ Y |λ(y) ≥ k },
is closed as it is the image of the set

{x ∈ X |µ(x) ≥ k },
which is closed by (13.4). �

Note that we cannot discard the hypothesis that π is projective in
(13.8). For example, let X be the disjoint union of A2 minus the y-
axis and a single point p. Define a morphism π : X −→ Y = A1 by
sending the extra point to the origin and otherwise taking the projec-
tion onto the x-axis. Then the fibre dimension is one at every point
of Y , other than at the origin, where it is zero. In particular λ is not
upper semi-continuous in this example. On the other hand, µ is upper
semi-continuous, by virtue of the fact that the extra point is isolated
in X.

One rather beautiful consequence of (13.4) is the following:

Corollary 13.9. Let π : X −→ Y be a morphism of projective vari-
eties.

If Y is irreducible and every fibre of π is irreducible and of the same
dimension, then X is irreducible.

Proof. Let X = X1 ∪ X2 ∪ · · · ∪ Xk be the decomposition of X into
its irreducible components. Let πi = π|Xi

: Xi −→ Yi, where Yi is the
image of Xi and let λi : Xi −→ N be the function associated to πi, as
in (13.8). Let

Zi = { y ∈ Yi |λi(y) ≥ λ0 }.
(13.8) implies that the closed sets Z1, Z2, . . . , Zk cover Y . As Y is
irreducible it follows that there is an index i, say i = 1, such that
Z1 = Y1 = Y . But then the fibres of π1 and π are equal, as they are
of the same dimension and the fibres of π are irreducible. This is only
possible if X = X1. �
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