
8. Linear systems

Definition 8.1. Let L be an invertible sheaf on a smooth projective
variety over an algebraically closed field. Let s ∈ H0(X,L). The divisor
(s) of zeroes of s is defined as follows. By assumption we may cover X
by open subsets Ui over which we may identify s|Ui

with fi ∈ OUi
. The

defines a Cartier divisor {(Ui, fi)}.

It is a simple matter to check that the Cartier divisor does not depend
on our choice of trivialisations. Note that as X is smooth the Cartier
divisor may safely be identified with the corresponding Weil divisor.

Lemma 8.2. Let X be a smooth projective variety over an algebraically
closed field. Let D0 be a divisor and let L = OX(D0).

(1) If s ∈ H0(X,L), s 6= 0 then (s) ∼ D0.
(2) If D ≥ 0 and D ∼ D0 then there is a global section s ∈

H0(X,L) such that D = (s).
(3) If si ∈ H0(X,L), i = 1 and 2, are two global sections then

(s1) = (s2) if and only if s2 = λs1 where λ ∈ k∗.

Proof. As OX(D0) ⊂ K, the section s corresponds to a rational func-
tion f . If D0 is the Cartier divisor {(Ui, fi)} then OX(D0) is locally
generated by f−1

i so that multiplication by fi induces an isomorphism
with OUi

. D is then locally defined by ffi. But then

D = D0 + (f).

Hence (1).
Now suppose that D > 0 and D = D0 + (f). Then (f) ≥ −D0.

Hence
f ∈ H0(X,OX(D0)) ⊂ H0(X,K) = K(X),

and the divisor of zeroes of f is D. This is (2).
Now suppose that (s1) = (s2). Then

D0 + (f1) = (s1) = (s2) = D0 + (f2).

Cancelling, we get that (f1) = (f2) and the rational function f1/f2
has no zeroes nor poles. Since X is a projective variety, f1/f2 = λ, a
constant. �

Definition 8.3. Let D0 be a divisor. The complete linear system
associated to D0 is the set

|D0| = {D ∈ Div(X) |D ≥ 0, D ∼ D0 }.

We have seen that

|D| = P(H0(X,OX(D0))).
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Thus |D| is naturally a projective space.

Definition 8.4. A linear system is any linear subspace of a complete
linear system |D0|.

In other words, a linear system corresponds to a linear subspace,
V ⊂ H0(X,OX(D0)). We will then write

|V | = {D ∈ |D0| |D = (s), s ∈ V } ' P(V ) ⊂ P(H0(X,OX(D0))).

Definition 8.5. Let |V | be a linear system. The base locus of |V | is
the intersection of the elements of |V |.

Lemma 8.6. Let X be a smooth projective variety over an algebraically
closed field, and let |V | ⊂ |D0| be a linear system.
V generates OX(D0) if and only if |V | is base point free.

Proof. If V generates OX(D0) then for every point x ∈ X we may find
an element σ ∈ V such that σ(x) 6= 0. But then D = (σ) does not
contain x, and so the base locus is empty.

Conversely suppose that the base locus is empty. The locus where
V does not generate OX(D0) is a closed subset Z of X. Pick x ∈ Z
a closed point. By assumption we may find D ∈ |V | such that x /∈
D. But then if D = (σ), σ(x) 6= 0 and σ generates the stalk Lx, a
contradiction. Thus Z is empty and OX(D0) is globally generated. �

Example 8.7. Consider OP1(4). The complete linear system |4p| de-
fines a morphism into P4, where p = [0 : 1] and q = [1 : 0], given
by P1 −→ P4, [S : T ] −→ [S4 : ST 3 : S2T 2 : ST 3 : T 4]. If
we project from [0 : 0 : 1 : 0 : 0] we will get a morphism into P3,
[S : T ] −→ [S4 : ST 3 : ST 3 : T 4]. This corresponds to the sublinear
system spanned by 4p, 3p+ q, p+ 3q, 4q.

Consider OP2(2) and the corresponding complete linear system. The
map associated to this linear system is the Veronese embedding P2 −→
P5, [X : Y : Z] −→ [X2 : Y 2 : Z2 : Y Z : XZ : XY ].

Note also the notion of separating points and tangent directions be-
comes a little clearer in this more geometric setting. Separating points
means that given x and y ∈ X, we can find D ∈ |V | such that x ∈ D
and y /∈ D. Separating tangent vectors means that given any irre-
ducible length two zero dimensional scheme z, with support x, we can
find D ∈ |V | such that x ∈ D but z is not contained in D. In fact the
condition about separating tangent vectors is really the limiting case
of separating points.

Thinking in terms of linear systems also presents an inductive ap-
proach to proving global generation. Suppose that we consider the
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complete linear system |D|. Suppose that we can find Y ∈ |D|. Then
the base locus of |D| is supported on Y . On the other hand suppose
that I is the ideal sheaf of Y in X. Then there is an exact sequence

0 −→ I −→ OX −→ OY −→ 0

As X is smooth D is Cartier and OX(D) is an invertible sheaf. Ten-
soring by locally free preserves exactness, so there are short exact se-
quences,

0 −→ I(mD) −→ OX(mD) −→ OY (mD) −→ 0.

Taking global sections, we get

0 −→ H0(X, I(mD) −→ H0(X,OX(mD) −→ H0(Y,OY (mD).

At the level of linear systems there is therefore a linear map

|D| −→ |D|Y |.

Consider another application of the ideas behind this section. Con-
sider the problem of parametrising subvarieties or subschemes X of
projective space Pr

k. Any subscheme is determined by the homoge-
neous ideal I(X) of polynomials vanishing on X. As in the case of
zero dimensional schemes, we would like to reduce to the data of a vec-
tor subspace of fixed dimension in a fixed vector space. The obvious
thing to consider is polynomials of degree d and the vector subspace of
polynomials of polynomials of degree d vanishing on X. But how large
should we take d to be?

The first observation is that if I is the ideal sheaf of X in Pr
k then

Id = H0(Pr
k, I(d)),

where I(d) is the Serre twist. To say that Id determinesX, is essentially
equivalent to saying that I(d) is globally generated. Fixing some data
about X (in the case of zero dimensional schemes this would be the
length) we would then like a positive integer d0 such that if d ≥ d0 then
two things are true:

• I(d) is globally generated.
• h0(Pr

k, I(d)), the dimension of the space of global sections, is
independent of X.

Now there is a short exact sequence

0 −→ I −→ OPr
k
−→ OX −→ 0.

Twisting by d, we get

0 −→ I(d) −→ OPr
k
(d) −→ OX(d) −→ 0.
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Taking global sections gives another exact sequence.

0 −→ H0(Pr
k, I(d)) −→ H0(Pr

k,OPr
k
(d)) −→ H0(X,OX(d)).

Again, it would be really nice if this exact sequence were exact on the
right. Then global generation of I(d) would be reduced to global gener-
ation of OX(d) and one could read of h0(Pr

k, I(d)) from h0(X,OX(d)).

4


	8. Linear systems

