7. Ample invertible sheaves

Theorem 7.1. Let X be a scheme over a ring A.

- (1) If $\phi: X \longrightarrow \mathbb{P}^n_A$ is an A-morphism then $\mathcal{L} = \phi^* \mathcal{O}_{\mathbb{P}^n_A}(1)$ is an invertible sheaf on X, which is generated by the global sections s_0, s_1, \ldots, s_n , where $s_i = \phi^* x_i$.
- (2) If \mathcal{L} is an invertible sheaf on X, which is generated by the global sections s_0, s_1, \ldots, s_n , then there is a unique A-morphism $\phi: X \longrightarrow \mathbb{P}^n_A$ such that $\mathcal{L} = \phi^* \mathcal{O}_{\mathbb{P}^n_A}(1)$ and $s_i = \phi^* x_i$.

Proof. It is clear that \mathcal{L} is an invertible sheaf. Since x_0, x_1, \ldots, x_n generate the ring $A[x_0, x_1, \ldots, x_n]$, it follows that x_0, x_1, \ldots, x_n generate the sheaf $\mathcal{O}_{\mathbb{P}_A^n}(1)$. Thus s_0, s_1, \ldots, s_n generate \mathcal{L} . Hence (1).

Now suppose that \mathcal{L} is an invertible sheaf generated by s_0, s_1, \ldots, s_n . Let

$$X_i = \{ p \in X \mid s_i \notin \mathfrak{m}_p \mathcal{L}_p \}.$$

Then X_i is an open subset of X and the sets X_0, X_1, \ldots, X_n cover X. Define a morphism

$$\phi_i \colon X_i \longrightarrow U_i,$$

where U_i is the standard open subset of \mathbb{P}^n_A , as follows: Since

$$U_i = \operatorname{Spec} A[y_0, y_1, \dots, y_n],$$

where $y_i = x_i/x_i$, is affine, it suffices to give a ring homomorphism

$$A[y_0, y_1, \ldots, y_n] \longrightarrow \Gamma(X_i, \mathcal{O}_{X_i}).$$

We send y_j to s_j/s_i , and extend by linearity. The key observation is that the ratio is a well-defined element of \mathcal{O}_{X_i} , which does not depend on the choice of isomorphisms $\mathcal{L}|_V \simeq \mathcal{O}_V$, for open subsets $V \subset X_i$.

It is then straightforward to check that the set of morphisms $\{\phi_i\}$ glues to a morphism ϕ with the given properties.

Example 7.2. Let $X = \mathbb{P}^1_k$, A = k, $\mathcal{L} = \mathcal{O}_{\mathbb{P}^1_k}(2)$.

In this case, global sections of \mathcal{L} are generated by S^2 , ST and T^2 . This morphism is represented globally by

$$[S:T] \longrightarrow [S^2:ST:T^2]$$

The image is the conic $XZ = Y^2$ inside \mathbb{P}^2_k .

More generally one can map \mathbb{P}^1_k into \mathbb{P}^n_k by the invertible sheaf $\mathcal{O}_{\mathbb{P}^1_k}(n)$. More generally still, one can map \mathbb{P}^m_k into \mathbb{P}^n_k using the invertible sheaf $\mathcal{O}_{\mathbb{P}^m_k}(1)$.

Corollary 7.3.

$$\operatorname{Aut}(\mathbb{P}^n_k) \simeq \operatorname{PGL}(n+1,k).$$

Proof. First note that PGL(n+1, k) acts naturally on \mathbb{P}^n_k and that this action is faithful.

Now suppose that $\phi \in \operatorname{Aut}(\mathbb{P}_k^n)$. Let $\mathcal{L} = \phi^* \mathcal{O}_{\mathbb{P}_k^n}(1)$. Since $\operatorname{Pic}(\mathbb{P}_k^n) \simeq \mathbb{Z}$ is generated by $\mathcal{O}_{\mathbb{P}_k^n}(1)$, it follows that $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}_k^n}(\pm 1)$. As \mathcal{L} is globally generated, we must have $\mathcal{L} \simeq \mathcal{O}_{\mathbb{P}_k^n}(1)$. Let $s_i = \phi^* x_i$. Then s_0, s_1, \ldots, s_n is a basis for the k-vector space $H^0(\mathbb{P}_k^n, \mathcal{O}_{\mathbb{P}_k^n}(1))$. But then there is a matrix

$$A = (a_{ij}) \in \operatorname{GL}(n+1,k)$$
 such that $s_i = \sum_{ij} a_{ij} x_j$

Since the morphism ϕ is determined by s_0, s_1, \ldots, s_n , it follows that ϕ is determined by the class of A in GL(n+1, k).

Lemma 7.4. Let $\phi: X \longrightarrow \mathbb{P}^n_A$ be an A-morphism. Then ϕ is a closed immersion if and only if

(1) $X_i = X_{s_i}$ is affine, and (2) the natural map of rings $A[y_0, y_1, \dots, y_n] \longrightarrow \Gamma(X_i, \mathcal{O}_{X_i})$ which sends $y_j \longrightarrow \frac{\sigma_j}{\sigma_i}$, is surjective.

Proof. Suppose that ϕ is a closed immersion. Then X_i is isomorphic to $\phi(X) \cap U_i$, a closed subscheme of affine space. Thus X_i is affine. Hence (1) and (2) follows as we have surjectivity on all of the localisations.

Now suppose that (1) and (2) hold. Then X_i is a closed subscheme of U_i and so X is a closed subscheme of \mathbb{P}^n_A .

Theorem 7.5. Let X be a projective scheme over an algebraically closed field k and let $\phi: X \longrightarrow \mathbb{P}_k^n$ be a morphism over k, which is given by an invertible sheaf \mathcal{L} and global sections s_0, s_1, \ldots, s_n which generate \mathcal{L} . Let $V \subset \Gamma(X, \mathcal{L})$ be the space spanned by the sections.

Then ϕ is a closed immersion if and only if

- (1) V separates points: that is, given p and $q \in X$ there is $\sigma \in V$ such that $\sigma \in \mathfrak{m}_P \mathcal{L}_p$ but $\sigma \notin \mathfrak{m}_q \mathcal{L}_q$.
- (2) V separates tangent vectors: that is, given $p \in X$ the set

$$\{\sigma \in V \,|\, \sigma \in \mathfrak{m}_p \mathcal{L}_p \},\$$

spans $\mathfrak{m}_p \mathcal{L}_p / \mathfrak{m}_p^2 \mathcal{L}_p$.

Proof. Suppose that ϕ is a closed immersion. Then we might as well consider $X \subset \mathbb{P}_k^n$ as a closed subscheme. In this case (1) is clear. Just pick a linear function on the whole of \mathbb{P}_k^n which vanishes at p but not at q (equivalently pick a hyperplane which contains p but not q).

Similarly linear functions on \mathbb{P}^n_k separate tangent vectors on the whole of projective space, so they certainly separate on X.

Now suppose that (1) and (2) hold. Then ϕ is clearly injective. Since X is proper over Spec k and \mathbb{P}_k^n is separated over Spec k it follows that ϕ is proper. In particular $\phi(X)$ and ϕ is a homeomorphism onto $\phi(X)$. It remains to show that the map on stalks

$$\mathcal{O}_{\mathbb{P}^n_k,p}\longrightarrow \mathcal{O}_{X,x},$$

is surjective. But the same piece of commutative algebra as we used in the proof of the inverse function theorem, works here. $\hfill \Box$

Definition 7.6. Let X be a noetherian scheme. We say that an invertible sheaf \mathcal{L} is **ample** if for every coherent sheaf \mathcal{F} there is an integer $n_0 > 0$ such that $\mathcal{F} \underset{\mathcal{O}_X}{\otimes} \mathcal{L}^n$ is globally generated, for all $n \ge n_0$.

Lemma 7.7. Let \mathcal{L} be an invertible sheaf on a Noetherian scheme. TFAE

(1) \mathcal{L} is ample.

(2) \mathcal{L}^m is ample for all m > 0.

(3) \mathcal{L}^m is ample for some m > 0.

Proof. (1) implies (2) implies (3) is clear.

So assume that $\mathcal{M} = \mathcal{L}^m$ is ample and let \mathcal{F} be a coherent sheaf. For each $0 \leq i \leq m-1$, let $\mathcal{F}_i = \mathcal{F} \otimes \mathcal{L}^i$. By assumption there is an integer n_i such that $\mathcal{F}_i \otimes \mathcal{M}^n$ is globally generated for all $n \geq n_i$. Let n_0 be the maximum of the n_i . If $n \geq n_0 m$, then we may write n = qm + i, where $0 \leq i \leq m-1$ and $q \geq n_0 \geq n_i$.

But then

$$\mathcal{F}\otimes\mathcal{L}^m=\mathcal{F}_i\otimes\mathcal{M}^q,$$

which is globally generated.

Theorem 7.8. Let X be a scheme of finite type over a Noetherian ring A and let \mathcal{L} be an invertible sheaf on X.

Then \mathcal{L} is ample if and only if \mathcal{L}^m is very ample for some m > 0.

Proof. Suppose that \mathcal{L}^m is very ample. Then there is an immersion $X \subset \mathbb{P}^r_A$, for some positive integer r, and $\mathcal{L}^m = \mathcal{O}_X(1)$. Let \overline{X} be the closure. If \mathcal{F} is any coherent sheaf on X then there is a coherent sheaf $\overline{\mathcal{F}}$ on \overline{X} , such that $\mathcal{F} = \overline{\mathcal{F}}|_X$. By Serre's result, $\overline{\mathcal{F}}(k)$ is globally generated for all $k \geq k_0$, for some integer k_0 . It follows that $\mathcal{F}(k)$ is globally generated, for all $k \geq k_0$, so that \mathcal{L}^m is ample, and the result follows by (7.7).

Conversely, suppose that \mathcal{L} is ample. Given $p \in X$, pick an open affine neighbourhood U of p so that $\mathcal{L}|_U$ is free. Let Y = X - U, give it

the reduced induced strucure, with ideal sheaf \mathcal{I} . Then \mathcal{I} is coherent. Pick n > 0 so that $\mathcal{I} \otimes \mathcal{L}^n$ is globally generated. Then we may find $s \in \mathcal{I} \otimes \mathcal{L}^n$ not vanishing at p. We may identify s with $s' \in \mathcal{O}_U$ and then $p \in U_s \subset U$, an affine subset of X.

By compactness, we may cover X by such open affines and we may assume that n is fixed. Replacing \mathcal{L} by \mathcal{L}^n we may assume that n =1. Then there are global sections $s_1, s_2, \ldots, s_k \in H^0(X, \mathcal{L})$ such that $U_i = U_{s_i}$ is an open affine cover.

Since X is of finite type, each $B_i = H^0(U_i, \mathcal{O}_{U_i})$ is a finitely generated A-algebra. Pick generators b_{ij} . Then $s^n b_{ij}$ lifts to $s_{ij} \in H^0(X, \mathcal{L}^n)$. Again we might as well assume n = 1.

Now let \mathbb{P}^N_A be the projective space with coordinates x_1, x_2, \ldots, x_k and x_{ij} . Locally we can define a map on each U_i to the standard open affine, by the obvious rule, and it is standard to check that this glues to an immersion.