
6. Tangent lines to plane curves

Question 6.1. Let C be a curve in P2 and let p ∈ P2.
How many tangent lines does p lie on?

The first thing that we will need is a natty way to describe the
projective tangent space to a variety.

Definition 6.2. Let X ⊂ Pn.
The projective tangent space to X at p is the closure of the

affine tangent space.

(Note the difference between the projective tangent space and the
projectivisation of the tangent space.) In other words the projective
tangent space has the same dimension as the affine tangent space and
is obtained by adding the suitable points at infinity. Suppose that the
curve is defined by the polynomial F (X, Y, Z). Then the tangent line
to C at p, is
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Of course it suffices to check that we get the right answer on an affine
piece.

Lemma 6.3. Let F be a homogeneous polynomial of degree d in X0, X1, . . . , Xn.
Then

dF =
∑

Xi
∂F

∂Xi

Proof. Both sides are linear in F . Thus it suffices to prove this for a
monomial of degree d, when the result is clear. �

It follows then that the tangent line above does indeed pass through
p. The rest is easy.

Finally we will need Bézout’s Theorem.

Theorem 6.4 (Bézout’s Theorem). Let C and D be two curves defined
by homogenous polynomials of degrees d and e. Suppose that C∩D does
not contain a curve.

Then |C ∩D| is at most de, with equality iff the intersection of the
two tangent spaces at p ∈ C ∩D is equal to p.

We are now ready to answer (6.1).

Lemma 6.5. Let C ⊂ Pn be a curve in P2 and let p ∈ P2 be a general
point.

Then p lies on d(d− 1) tangent lines.
1



Proof. Fix p = [a : b : c] and let D be the curve defined by

G = a
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+ b
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+ c

∂F

∂Z
.

Then G is a polynomial of degree d − 1. Consider a point q where C
intersects D. Then the tangent line to C at q is given by
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But then since p satisfies this equation, as q lies on D, it follows that
p lies on the tangent line of C at q. Similarly it is easy to check the
converse, that if p lies on the tangent line to C at q, then q is an
intersection point of C and D.

Now apply Bézout’s Theorem. �

There is an interesting way to look at all of this. In fact one may
generalise the result above to the case of curves with nodes. Note that
if you take a curve in P3 and take a general projection down to P2, then
you get a nodal curve. Indeed it is easy to pick the point of projection
not on a tangent line, since the space of tangent lines obviously sweeps
out a surface; it is a little more involved to show that the space of
three secant lines is a proper subvariety. (6.5) was then generalised to
this case and it was shown that if δ is the number of nodes, then the
number

(d− 1(d− 2)

2
− δ

is an invariant of the curve.
Here is another way to look at this. Suppose that we project our

curve down to P1 from a point. Then we get a finite cover of P1, with d
points in the general fibre. Lines tangent to C passing through p then
count the number of branch points, that is, the number of points in the
base where the fibre has fewer than d points. Since this tangent line
is only tangent to p and is simply tangent (that is, there are no flex
points) there are d − 1 points in this fibre, and the ramification point
corresponding to the branch point is where two sheets come together.

The modern approach to this invariant is quite different. If we are
over the complex numbers C, changing perspective, we may view the
curve C as a Riemann surface covering another Riemann surface D.
Now the basic topological invariant of a compact oriented Riemann
surface is it’s genus. In these terms there is a simple formula that
connects the genus of C and B, in terms of the ramification data,
known as Riemann-Hurwitz,

2g − 2 = d(2h− 2) + b,
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where g is the genus of C, h the genus of B, d the order of the cover
and b the contribution from the ramification points. Indeed if locally
on C, the map is given as z −→ ze so that e sheets come together, the
contribution is e− 1.

In our case, B = P1 which is of genus 0, for each branch point, we
have simple ramification, so that e = 2 and the contribution is one,
making a total b = d(d− 1). Thus

2g − 2 = −2d+ d(d− 1).

Solving for g we get

g =
(d− 1)(d− 2)

2
.

Note that if d ≤ 2, then we get g = 0 as expected (that is C ' P1) and
if d = 3 then we get an elliptic curve.
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