
5. The inverse function theorem

We now want to aim for a version of the Inverse function Theorem.
In differential geometry, the inverse function theorem states that if a
function is an isomorphism on tangent spaces, then it is locally an
isomorphism. Unfortunately this is too much to expect in algebraic
geometry, since the Zariski topology is too weak for this to be true.
For example consider a curve which double covers another curve. At
any point where there are two points in the fibre, the map on tangent
spaces is an isomorphism. But there is no Zariski neighbourhood of
any point where the map is an isomorphism.

Thus a minimal requirement is that the morphism is a bijection.
Note that this is not enough in general for a morphism between al-
gebraic varieties to be an isomorphism. For example in characteristic
p, Frobenius is nowhere smooth and even in characteristic zero, the
parametrisation of the cuspidal cubic is a bijection but not an isomor-
phism.

Lemma 5.1. If f : X −→ Y is a projective morphism with finite fibres,
then f is finite.

Proof. Since the result is local on the base, we may assume that Y is
affine. By assumption X ⊂ Y ×Pn and we are projecting onto the first
factor. Possibly passing to a smaller open subset of Y , we may assume
that there is a point p ∈ Pn such that X does not intersect Y × {p}.

As the blow up of Pn at p, fibres over Pn−1 with fibres isomorphic to
P1, and the composition of finite morphisms is finite, we may assume
that n = 1, by induction on n.

We may assume that p is the point at infinity, so that X ⊂ Y ×A1,
and X is affine. Now X is defined by f(x) ∈ A(Y )[x], where the
coefficients of f(x) lie in A(Y ). Suppose that

f(x) = anx
n + an−1x

n−1 + · · ·+ a0.

We may always assume that an does not vanish at y. Passing to the
locus where an does not vanish, we may assume that an is a unit, so
that dividing by an, we may assume that an = 1. In this case the ring
B is a quotient of the ring

A[x]/〈f〉.
But the latter is generated over A by 1, x, . . .xn−1, and so is a finitely
generated module over A. �

Theorem 5.2. Let f : X −→ Y be a projective morphism between
quasi-projective varieties.
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Then f is an isomorphism if and only if it is a bijection and the
differential dfp is injective.

Proof. One direction is clear. Otherwise assume that f is projective
and a bijection on closed points. Then f is finite by (5.1). The result
is local on the base, so we may assume that Y = SpecC is affine, in
which case X = SpecD is affine, where C is a finitely generated D-
module. Pick x ∈ X and let y = f(x). Then x = p and y = q are two
prime ideals in C and D. Let A be the local ring of Y at y, B of X at x.
Then A is the localisation of C at the multiplicative subset S = C − q
and as x is the unique point of the fibre, B is the localisation of D by
the multiplicative subset T = S · D, so that B is a finitely generated
A-module.

Let φ : A −→ B be the induced ring homomorphism. Then B is
a finitely generated A-module and we just need to show that φ is an
isomorphism.

As f is a bijection on closed points, it follows that φ is injective. So
we might as well suppose that φ is an inclusion. Let m be the maximal
ideal of A and let n be the maximal ideal of B. By assumption

m

m2
−→ n

n2
,

is surjective. But then

mB + n2 = n.

By Nakayama’s Lemma applied to the B-module n/mB, it follows that
mB = n. But then

B/A⊗ A/m = B/(mB + A) = B/(n + A) = 0.

Nakayama’s Lemma applied to the finitely generated A-module B/A
implies that B/A = 0 so that φ is an isomorphism. �

Lemma 5.3. Suppose that X ⊂ Pn is a quasi-projective variety and
suppose that π : X −→ Y is the morphism induced by projection from
a linear subspace Λ.

Let y ∈ Y . Then π−1(y) = 〈Λ, y〉∩X. If further this fibre consists of
one point, then the map between Zariski tangent spaces is an isomor-
phism if the intersection of 〈Λ, x〉 with the Zariksi tangent space to X
at x has dimension zero.

Proof. Easy. �

Proposition 5.4. Let X be a smooth irreducible subset of Pn of dimen-
sion k. Consider the projection Y of X down to a smaller dimensional
projective space Pm, from a linear space Λ of dimension n−m− 1.
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If the dimension of m ≥ 2k + 1 and Λ is general (that is, belongs to
an appropriate open subset of the Grassmannian) then π is an isomor-
phism.

Proof. Since projection from a general linear space is the same as a
sequence of projections from general points, we may assume that Λ is
in fact a point p, so that m = n− 1.

Now we know that π is a bijection provided that p does not lie on any
secant line. Since the secant variety has dimension at most 2k + 1, it
follows that we may certainly find a point away from the secant variety,
provided that n > 2k+ 1. Now since a tangent line is a limit of secant
lines, it follows that such a point will also not lie on any tangent lines.

But then π is then an isomorphism on tangent spaces, whence an
isomorphism. �

For example, it follows that any curve may be embedded in P3 and
any surface in P5.

3


	5. The inverse function theorem

