Definition 23.1. A smooth projective variety is Fano if $-K_{X}$ is ample.

Example 23.2. Let $X \subset \mathbb{P}^{r}$ be a smooth hypersurface of degree d. By adjunction

$$
K_{X}=\left.\left(K_{\mathbb{P}^{r}}+X\right)\right|_{X}=(d-r-1) H,
$$

where H is the class of a hyperplane. Thus X is Fano if and only if $d \leq r$.

Note that the product of Fano varieties is Fano. If C is a smooth projective curve then C is Fano if and only if $C \simeq \mathbb{P}^{1}$. A Fano surface is called a del Pezzo surface. What are the del Pezzo surfaces? \mathbb{P}^{2} is a del Pezzo surface. $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is a del Pezzo surface; either use the fact that it is product of Fanos or use the fact that it is isomorphic to a quadric in \mathbb{P}^{3}. A smooth cubic surface is a del Pezzo surface. Let S be the blow up of \mathbb{P}^{2} at a point. Then there is a morphism $S \longrightarrow \mathbb{P}^{1}$, with fibres copies of \mathbb{P}^{1}.

The degree d of a del Pezzo surface is the self-interesection of $-K_{S}$.
Theorem 23.3. Let $\pi: S \longrightarrow \mathbb{P}^{2}$ be the blow up of \mathbb{P}^{2} along r general points.

Then S is a del Pezzo surface if and only if $r \leq 8$.
Here general means that the points belong to a Zariski open subset of the product of r copies of \mathbb{P}^{2}.

Proof. Note that

$$
d=K_{S}^{2}=K_{\mathbb{P}^{2}}^{2}-r=9-r .
$$

If S is a del Pezzo surface then $d>0$ and so $r \leq 8$.
Now suppose that $r \leq 8$. Suppose that we blow up $p_{1}, p_{2}, \ldots, p_{r}$ with exceptional divisors $E_{1}, E_{2}, \ldots, E_{r}$. Then

$$
K_{S}=\pi^{*} K_{\mathbb{P}^{2}}+\sum E_{i} .
$$

We have to show that $-K_{S}$ is ample. We will just prove a small part of this result. If $r \leq 6$ then we will show that $-K_{S}$ is very ample. We assume that no three points of $p_{1}, p_{2}, \ldots, p_{r}$ are collinear and no six points lie on a conic. We have to show that the linear system $\left|-K_{S}\right|$ separates points and tangent vectors.

The linear system

$$
\left|-K_{\mathbb{P}^{2}}\right|_{1}=|3 L|
$$

is the linear system of all cubic curves. Thus divisors in the linear system

$$
\left|-K_{S}\right|=\left|3 \pi^{*} L-\sum E_{i}\right|,
$$

correspond to cubics through $p_{1}, p_{2}, \ldots, p_{r}$.
Suppose that we pick two points x and $y \in S$. This gives us two points p_{r+1} and p_{r+2} in \mathbb{P}^{2}. If x and y don't belong to the exceptional divisors, then we have $r+2 \leq 8$ distinct points in \mathbb{P}^{2}. We check that these impose independent conditions on cubics. We have to check that for all $i \leq r+1 \leq 7$ we can find a cubic through $p_{1}, p_{2}, \ldots, p_{i}$ not containing p_{i+1}.

If $i \leq 6$ then pick three pairs of lines. As no three points of $p_{1}, p_{2}, \ldots, p_{r}$ are collinear, then we can choose our lines not containing p_{i+1}. If $i=7$ then pick a conic through five points and a line through the last point.

Thus if x and y don't lie on an exceptional divisor, then we may find a divisor in the linear system $\left|-K_{S}\right|$ through x not through y.

If x belongs to an exceptional divisor then $p_{r+1}=p_{j}$ for some j. Let's suppose $p_{r+1}=p_{r}$. Suppose that y does not belong to an exceptional divisor.

Then we need to find a cubic through $p_{1}, p_{2}, \ldots, p_{r}$ with the tangent direction determined by x not passing through p_{r+2}.

If $r=7$ then $\left|-K_{S}\right|$ defines a two to one map to \mathbb{P}^{2}, branched over a quartic curve $C, \pi: S \longrightarrow \mathbb{P}^{2}$. It follows, by Riemann-Hurwitz that

$$
K_{S}=\pi^{*}\left(K_{\mathbb{P}^{2}}+1 / 2 C\right),
$$

so that $-K_{S}$ is the pullback of an ample divisor L. Thus $-K_{S}$ is ample. In fact $-2 K_{S}$ is very ample.

If $r=8$ then $\left|-K_{S}\right|$ defines a pencil, $\pi: S \longrightarrow \mathbb{P}^{1}$. Two cubics intersect in 8 points, so that the pencil has a base point and π is not a morphism. $\left|-2 K_{S}\right|$ defines a double cover of a quadric cone in \mathbb{P}^{3}. $-3 K_{S}$ is very ample.

It is interesting to consider the image of the anticanonical linear system. If $r=6$ so that $d=3$ then $\left|-K_{S}\right|$ is the linear system of cubics through six points. The linear system of all cubics is 9 dimensional and we have already seen that six points impose independent conditions. Therefore $\left|-K_{S}\right|$ is a three dimensional linear system, and S is embedded as a smooth hypersurface of degree 3 in \mathbb{P}^{3}, a cubic surface. This raises the interesting question, is every smooth cubic the blow up of \mathbb{P}^{2} in six points?

Let's count moduli. The space of six points on \mathbb{P}^{2} has dimension 6 . $2=12$. The automorphism group of \mathbb{P}^{2} is $\mathrm{PGL}(3)$ which has dimension
$3 \cdot 3-1=8$. Thus there is a four dimensional family of non-isomorphic del Pezzo surfaces obtained by blowing up 6 points.

The space of cubics is a linear system of dimension

$$
\binom{3+3}{3}-1=\binom{6}{3}-1=19
$$

The automorphism group of \mathbb{P}^{3} is $\mathrm{PGL}(4)$ which has dimension $4 \cdot 4-1=$ 15. Thus there is a four dimensional family of non-isomorphic cubic surfaces.

This suggests that every cubic surface is the blow up of \mathbb{P}^{2} at six points. Unfortunately, it is hard to prove this directly. The natural map

$$
\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2} \rightarrow \rightarrow \mathbb{P}^{19}
$$

which sends a six-tuple of points $\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)$ to the corresponding cubic surface is a rational map, not a morphism.

If $r=5$ then $d=4$. The linear system of cubics through five points is a copy of \mathbb{P}^{4}. Thus we get a surface $S \subset \mathbb{P}^{4}$ of degree 4 . Consider the exact sequence

$$
0 \longrightarrow \mathcal{I}_{S} \longrightarrow \mathcal{O}_{\mathbb{P}^{4}} \longrightarrow \mathcal{O}_{S} \longrightarrow 0
$$

If we twist this by $\mathcal{O}_{\mathbb{P}^{4}}(2)$, we get

$$
0 \longrightarrow \mathcal{I}_{S}(2) \longrightarrow \mathcal{O}_{\mathbb{P}^{4}}(2) \longrightarrow \mathcal{O}_{S}(2) \longrightarrow 0 .
$$

Taking global sections we get a left exact sequence

$$
0 \longrightarrow H^{0}\left(\mathbb{P}^{4}, \mathcal{I}_{S}(2)\right) \longrightarrow H^{0}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(2)\right) \longrightarrow H^{0}\left(S, \mathcal{O}_{S}(2)\right) .
$$

Now

$$
h^{0}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}^{4}}(2)\right)=\binom{4+2}{2}=\binom{6}{2}=15 .
$$

On the other hand the linear system $\left.\mid \mathcal{O}_{S}(2)\right) \mid$ corresponds to sextics in \mathbb{P}^{2} which have multiplicity two at five points. It is 3 conditions to be singular at any given point (in local coordinates we need the constant term and the coefficient of both x and y to vanish). Thus

$$
h^{0}\left(S, \mathcal{O}_{S}(2)\right)=\binom{6+2}{2}-3 \cdot 5=13 .
$$

Thus

$$
h^{0}\left(\mathbb{P}^{4}, \mathcal{I}_{S}(2) \geq 2\right.
$$

It follows that there are two quadratic polynomials which vanish on S, that is, there are two quadric hypersurfaces Q_{1} and Q_{2} which contain S. Now the intersection of two quadrics is a surface of degree 4 , so that we must have $S=Q_{1} \cap Q_{2}$ (as schemes).

Conversely suppose we are given two quadrics Q_{1} and Q_{2} whose intersection is a smooth surface S.

$$
K_{Q_{1}}=\left.\left(K_{\mathbb{P}^{4}}+Q_{1}\right)\right|_{Q_{1}}=-3 H
$$

Thus

$$
K_{S}=\left.\left(K_{Q_{1}}+S\right)\right|_{S}=-H
$$

so that S is anticanonically embedded.
Let's count moduli again. The moduli space of surfaces which are the blow up of five points has dimension 2. Picking Q_{1} and Q_{2} is like picking a pencil l of quadrics, that is, a line l in the space of all quadrics, that is a point l of a Grassmannian. The space of all quadrics is a copy of \mathbb{P}^{14} and so we get a

$$
2(14-1)=26
$$

dimensional family. The automorphism group of \mathbb{P}^{4} is $\operatorname{PGL}(5)$ which has dimension 24 , so we get two dimensions of moduli.

If $r=4$ then we blow up four points of \mathbb{P}^{2}. There is no moduli and our surface gets embedded as a degree five surface in \mathbb{P}^{5}. If $r \leq 3$ then S is toric, since three points in general points are the same as the three coordinate points.

Theorem 23.4. Let S be a del Pezzo surface.
Then S is isomorphic either to
(1) $\mathbb{P}^{1} \times \mathbb{P}^{1}$, or
(2) \mathbb{P}^{2} blown up in $r \leq 8$ points.

What can we say about lines on the cubic, from this point of view? Well, $C \subset S$ is a line if and only if

$$
1=H \cdot C=-K_{S} \cdot C
$$

Since a line is isomorphic to \mathbb{P}^{1}, we see that lines on the cubic surface are the same as -1 -curves. What are the -1 -curves on \mathbb{P}^{2} blown up at $r \leq 8$ points?

We have

$$
\operatorname{Pic}(S)=\mathbb{Z} \cdot H \bigoplus_{i=1}^{r} \mathbb{Z} E_{i}
$$

where $H=\pi^{*} L$ is the pullback of a line. Thus a general curve in S has class

$$
a H-\sum a_{i} E_{i},
$$

where $a, a_{1}, a_{2}, \ldots, a_{r}$ are integers. The class of K_{S} is

$$
-3 H+\sum_{4} E_{i} .
$$

Note that

$$
\begin{aligned}
H^{2} & =1 \\
H \cdot E_{i} & =0 \\
E_{i} \cdot E_{j} & = \begin{cases}-1 & \text { if } i=j \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

If C is a -1 -curve then $K_{S} \cdot C=-1$ and $C^{2}-1$. This gives us two Diophantine equations:

$$
-3 a+\sum a_{i}=-1 \quad \text { and } \quad a^{2}-\sum a_{i}^{2}=-1
$$

Let us start by guessing some solutions. We already know that if we blow up a point then the exceptional divisor is a - 1 -curve. Thus $a=0$,

$$
a_{i}= \begin{cases}-1 & \text { if } i=k \\ 0 & \text { otherwise }\end{cases}
$$

is a solution, for any k. There are r such exceptional curves.
The self-intersection of a line is 1 . If we blow up a point on the line then the self-intersection of the strict transform is 0 . If we blow up two points then the self-intersection of the strict transform is -1 . Thus the strict transform of a line through two points is a - 1 -curve. There are

$$
\binom{r}{2}
$$

such lines. These correspond to the solutions $a=1$,

$$
a_{i}= \begin{cases}1 & \text { if } i=k \text { or } i=l \\ 0 & \text { otherwise }\end{cases}
$$

for any pair $k \neq l$.
The self-intersection of a conic is 4 . If we blow up a five point on the conic then the self-intersection of the strict transform is -1 . Thus the strict transform of a conic through five points is a -1 -curve. There are

$$
\binom{r}{5}
$$

such conics. These correspond to the solutions $a=2$,

$$
a_{i}= \begin{cases}1 & \text { if } i \in I \\ 0 & \text { otherwise }\end{cases}
$$

for any set I of five indices.

If $r=6$ this gives

$$
6+\binom{6}{2}+\binom{6}{5}=6+15+6=27
$$

-1-curves. As a cubic surface has no more than 27 lines, every smooth cubic surface contains 27 lines.

If $r=5$ we get

$$
5+\binom{5}{2}+\binom{5}{5}=5+10+1=16
$$

-1 -curves. Thus there are 16 lines on the intersection of two quadrics in \mathbb{P}^{4}.

One can check that if $r \leq 7$ that there are no other solutions.
We end with one of the most impressive and important results in the classification of surfaces:

Theorem 23.5 (Castelnuovo). Let S be a smooth projective surface and let $C \subset S$ be a curve.

Then C is a-1-curve if and only if there is birational morphism $\pi: S \longrightarrow T$, which blows up a smooth point $p \in T$, with exceptional divisor C.

Proof. One direction is clear; if π blows up a smooth point then E is a - 1 -curve.

We prove the converse. Let H be an ample divisor. Then $H \cdot E=$ $k>0$. Possibly replacing H by a multiple, we may assume that $k>1$ and furthermore that $K_{S}+H$ is ample. Let

$$
D=K_{S}+(k-1) E+H
$$

Then

$$
D \cdot C=\left(K_{S}+(k-1) E+H\right) \cdot C=-1-(k-1)+k=0 .
$$

On the other hand, let m be a positive integer such that $A=m\left(K_{S}+H\right)$ is very ample. By Serre vanishing we may assume that

$$
h^{1}(S, A)=0
$$

Note that if $B \in|A|$ then $B+m(k-1) E \in|m D|$. Thus the linear system $|m D|$ separates points and tangent vectors outside of the support of E. In particular the base locus of $|m D|$ is contained in E.

Consider the exact sequence

$$
0 \longrightarrow \mathcal{O}_{S}(-E) \longrightarrow \mathcal{O}_{S} \longrightarrow \mathcal{O}_{E} \longrightarrow 0 .
$$

Twisting by $m D$ we get

$$
0 \longrightarrow \mathcal{O}_{S}(m D-E) \longrightarrow \underset{6}{\mathcal{O}_{S}(m D) \longrightarrow \mathcal{O}_{E}(m D) \longrightarrow 0 . . . ~}
$$

Now

$$
m D-E=A+l E,
$$

where $l=m(k-1)-1$. We show that

$$
h^{1}(S, A+i E)=0
$$

for $0 \leq i \leq l$. The case $i=0$ follows by assumption. There is an exact sequence

$$
\begin{gathered}
0 \longrightarrow \mathcal{O}_{S}(A+(i-1) E) \longrightarrow \mathcal{O}_{S}\left(A+i E \longrightarrow \mathcal{O}_{E}(A+i E) \longrightarrow 0\right. \\
(A+i E) \cdot E=m k-i>0 . \text { Thus } \\
\quad h^{1}(E, A+i E)=h^{1}\left(\mathbb{P}^{1},(m k-i) p\right)=0 .
\end{gathered}
$$

Taking the long exact sequence of cohomology we see that

$$
h^{1}(S, A+i E)=h^{1}(S, A+(i-1) E)=0,
$$

by induction on i. Thus the linear system $|m D|$ is base point free. Consider the image T of the corresponding morphism $S \longrightarrow \mathbb{P}^{N}$. Since $|m D|$ separates points and tangent vectors outside E, T is a surface and the corresponding morphism $\pi: S \longrightarrow T$ is birational. Let G be the restriction of a hyperplane from \mathbb{P}^{N}. Then $\pi^{*} G=m D$. Let C^{\prime} be the image of C. Then

$$
0=(m D) \cdot C=\pi^{*} G \cdot C=G \cdot C^{\prime} .
$$

As G is ample, C^{\prime} is zero dimensional and so C^{\prime} is a point. Thus π contracts C.

It remains to prove that T is smooth. Consider the divisor $m D-E$.

$$
E \cdot(m D-E)=1
$$

By the same argument as above, $m D-E$ is base point free. In fact it separates points and tangent vectors, so that it is very ample. We may find $\Sigma \in|m D-E|$ such that Σ is smooth. $\Sigma \cdot C=1$. Thus $\Sigma^{\prime}=\pi(\Sigma)$ is smooth. But $\Sigma+C \in|m D|$ and $\pi(\Sigma+C)=\Sigma^{\prime}$ so that Σ^{\prime} is Cartier. But then T is smooth.

