## 22. - 1-CURVES

We will need a little bit of intersection theory.
Given any variety $X$ we can define cycles of any dimension on $X$. A cycle $\alpha$ is a formal linear combination of closed subvarieties, $\sum n_{V} V$. If $V$ all have the same dimension $k$ then we say $\alpha$ is a $k$-cycle. Two $k$ cycles $\alpha$ and $\beta$ are rationally equivalent if there is a $k+1$ dimensional subvariety $W$ which contains the support of $\alpha$ and $\beta$ and $\alpha$ and $\beta$ are linearly equivalent divisors on the normalisation of $W$. If $X$ has dimension $n$ then an $(n-1)$-cycle is the same as a Weil divisor.

Note that we can pullback Cartier divisors. We can also pushforward Weil divisors, or more generally cycles. If $f: X \longrightarrow Y$ is a proper morphism and $V$ is an irreducible closed subvariety with image $W$ then

$$
f_{*} V= \begin{cases}d W & \text { if }\left.f\right|_{V}: V \longrightarrow W \text { is generically finite of degree } d \\ 0 & \text { otherwise }\end{cases}
$$

In other words if the image of $V$ is lower dimensional then $f_{*} V=0$. If the image $W$ of $V$ has the same dimension then $f_{*} V=d W$ where $d$ is the degree of $V$ over $W$. We extend the pushforward by linearity to all cycles.

Note that we can intersect a cycle $\alpha$ with a Cartier divisor $D$, to get a cycle $\alpha \cdot D$. By linearity we may assume that $\alpha=V$ is a closed irreducible subvariety. In this case we can define a linear equivalence of Cartier divisors on $V$. If the support of $D$ does not contain then simply restrict the equations of $D$ to $V$. If the support of $D$ does contain $V$ then restrict the invertible sheaf $\mathcal{O}_{X}(D)$ to $V$ to get an invertible sheaf on $V$. An invertible sheaf is the same as a linear equivalence class of Cartier divisors. Now pushforward the corresponding Weil divisor, via the natural inclusion $V \longrightarrow X$ to get a cycle on $X$.

Now pushforward is not a ring homomorphism, but it is almost is:
Theorem 22.1 (Push-pull). Let $f: X \longrightarrow Y$ be a proper morphism of varieties. Let $\alpha$ be a cycle on $X$ and let $D$ be a Cartier divisor on $Y$.

Then

$$
f_{*}\left(\alpha \cdot f^{*} D\right)=f_{*} \alpha \cdot D .
$$

0 -cycles are formal sums of points $\sum n_{p} p$. The degree is the sum $\sum n_{p}$. Note that two rationally equivalent 0 -cycles have the same degree.

If $X$ is a smooth projective variety over $\mathbb{C}$ then we can associate to any cycle $\alpha$ a class in homology. As usual, by linearity it is enough to do this for irreducible subvarieties $V$. Take a simplicial decomposition
of $X$ which induces a simplicial decomposition of $V$. Then $V$ defines a class $[V] \in H_{*}(X, \mathbb{Z})$. A divisor $D$ determines a class in cohomology $[D] \in H^{2}(X, \mathbb{Z})$. We can pair this with a homology classes. This is compatible with the algebraic intersection product

$$
[D \cdot \alpha]=[D] \cap[\alpha] \in H_{*}(X, \mathbb{Z})
$$

Note also that there is a topological push-pull formula.
Now let us consider what happens for surfaces. 1-cycles, or Weil divisors, are nothing more than formal sums of curves. If we intersect a Weil divisor with a Cartier divisor, we will get a rational equivalence class of 0 -cycles. The intersection number is just the degree of the 0 cycles. From now on, the intersection product will denote the degree.

We can compute the degree locally.
Definition 22.2. Let $S$ be a smooth surface and let $p$ be a point of $S$. Let $D_{1}$ and $D_{2}$ be two Cartier divisors on $S$.

First suppose that $D_{1}=C_{1}$ and $D_{2}=C_{2}$ are prime divisors. The local intersection number of $D_{1}$ and $D_{2}$ at $p$,

$$
i_{p}\left(D_{1}, D_{2}\right)=\operatorname{dim}_{k} \mathcal{O}_{S, p} /\left\langle f_{1}, f_{2}\right\rangle
$$

where $f_{1}$ and $f_{2}$ are local generators of the ideals of $C_{1}$ and $C_{2}$.
Now extend this by linearity to any two divisors with no common components.

It is interesting to check that the local intersection number coincides with geometric intuition.

Example 22.3. Let $S=\mathbb{A}^{2}$, let $C_{1}$ be the $x$-axis $=0$ and let $C_{2}$ be the conic $y=x^{2}$. Then $C_{1}$ and $C_{2}$ are tangent. The local intersection number is the dimension of the $k$-vector space

$$
\frac{k[x, y]}{\left\langle y, y-x^{2}\right\rangle}=\frac{k[x]}{\left\langle x^{2}\right\rangle}=k\langle 1, x\rangle
$$

which is two, as expected.
Proposition 22.4. If $S$ is a projective surface and $D_{1}$ and $D_{2}$ are two divisors with no common components

$$
D_{1} \cdot D_{2}=\sum_{p} i_{p}\left(D_{1}, D_{2}\right)
$$

Here the sum is over all points $p$ in the interesection.
Theorem 22.5 (Bézout's Theorem). Let $C$ and $D$ be two curves defined by homogenous polynomials of degrees $d$ and e. Suppose that $C \cap D$ does not contain a curve.

Then $|C \cap D|$ is at most de, with equality if and only if the intersection of the two tangent spaces at $p \in C \cap D$ is equal to $p$.

Proof. $C \sim d L$ and $D \sim e L$, where $L$ is a line. In this case

$$
|C \cap D| \leq \sum_{p} i_{p}(C, D)=C \cdot D=(d L) \cdot(e L)=(d e) L^{2}=d e
$$

Definition 22.6. Let $C \subset S$ be a curve in a smooth surface. Let $p \in S$ be a point of $S$.

The multiplicity of $C$ at $p \in S$ is the largest $\mu$ such that $\mathcal{I}_{p} \subset \mathfrak{m}^{\mu}$ where $\mathfrak{m}$ is the maximal ideal of $S$ at $p$ in $\mathcal{O}_{S, p}$ and $\mathcal{I}$ is the ideal sheaf of $C$ in $S$.

Note that $\mathcal{I}=\langle f\rangle$, so we just want the largest $\mu$ such that $f \in \mathfrak{m}^{\mu}$. If we work over $\mathbb{C}$, then we can choose coordinates $x$ and $y$. In this case $\mathfrak{m}=\langle x, y\rangle$ and $f$ is a power series in $x$ and $y$. If we expand $f$ in powers of $x$ and $y$,

$$
f(x, y)=f_{0}+f_{1}+f_{2}+\ldots
$$

where $f_{i}$ is homogenous of degree $i$ then the multiplicity $\mu$ is the smallest integer such that $f_{\mu} \neq 0$.

Lemma 22.7. Let $C \subset S$ be a curve in a smooth surface. Let $p \in S$ be a point of $S$ and let $\pi: T \longrightarrow S$ be the blow up of $S$ at $p$. Let $\tilde{C}$ be the strict transform of $C$. Then

$$
\pi^{*} C=\tilde{C}+\mu E
$$

Proof. Pick coordinates so that $y=0$ is not tangent to any branch of $C$. Then $T \subset S \times \mathbb{P}^{1}$ and local coordinates on $T$ are given by $(x, t)$, where $y=t x$. In this case

$$
f(x, y)=f_{\mu}(x, x t)+f_{\mu+1}(x, x t)=x^{\mu}\left(f_{\mu}(1, t)+x f_{\mu}(1, t)+\ldots\right)
$$

As $x=0$ is the equation of $E$ the result is clear.
Proposition 22.8. Let $S$ be a smooth surface, let $p \in S$ be a point of $S$ and let $\pi: T \longrightarrow S$ be the blow up of $S$ at $p$, with exceptional divisor $E$.

Then $E^{2}=-1$.
Proof. We give two proofs of this result.
Here is the first. Note that this is a local computation. So we might as well assume that $S=\mathbb{P}^{2}$. Pick a line $L$ passing through $p$. Then $L$ is a Cartier divisor on $S$. We have

$$
\pi^{*} L=M+E,
$$

where $M$ is the strict transform of $L$.

Let $L_{1}$ and $L_{2}$ be two general lines through $p$. Then

$$
L^{2}=L_{1} \cdot L_{2}=1,
$$

that is, two lines meet in one point. Let $M_{1}$ and $M_{2}$ be the strict transforms of $L_{1}$ and $L_{2}$. Then $M_{1}$ and $M_{2}$ don't meet, by definition of the blow up. Thus

$$
M^{2}=M_{1} \cdot M_{2}=0
$$

To practice using push-pull, let us calculate $E \cdot \pi^{*} L$. By push-pull,

$$
E \cdot \pi^{*} L=\pi_{*}\left(E \cdot \pi^{*} L\right)=\pi_{*} E \cdot L=0
$$

Thus

$$
1=M \cdot \pi^{*} L=M \cdot(M+E)=M \cdot M+M \cdot E=1,
$$

which is consistent.
Now let us calculate $E \cdot \pi^{*} L$. By push-pull this is

$$
\pi_{*}\left(E \cdot \pi^{*} L\right)=\pi_{*} E \cdot L=0
$$

since $\pi_{*} E=0$. On the other hand,

$$
E \cdot \pi^{*} L=E \cdot(M+E)=E \cdot M+E^{2}=1+E^{2}
$$

Thus $E^{2}=-1$.
Here is the second method. The ideal sheaf of $E$ in $T$ is given by $\mathcal{O}_{T}(-E)$. By definition of the blow up, this restricts to $\mathcal{O}_{E}(1)=$ $\mathcal{O}_{\mathbb{P}^{1}}(1)$. Thus $\mathcal{O}_{T}(E)$ restricts to $\mathcal{O}_{E}(-1)$, so that $\left.E\right|_{E}$ has degree -1 .

Definition-Lemma 22.9. Let $S$ be a smooth surface and let $C \subset S$ be a proper irreducible curve.

Any two of the following three properties implies the third:
(1) $C \simeq \mathbb{P}^{1}$.
(2) $C^{2}=-1$.
(3) $K_{S} \cdot C=-1$.

In this case we call $E$ a-1-curve.
Proof. By adjunction

$$
\left.\left(K_{S}+C\right)\right|_{C}=K_{C}
$$

Thus

$$
2 g-2=\operatorname{deg} K_{C}=\left(K_{S}+C\right) \cdot C
$$

Note that $C \simeq \mathbb{P}^{1}$ if and only if $g=0$. The result is then clear.

Lemma 22.10. Let $\pi: T \longrightarrow S$ be the blow up of a smooth point of $a$ smooth surface. Let $E$ be the exceptional divisor.

Then

$$
K_{T}=\pi^{*} K_{S}+E .
$$

Proof. Note that $\pi$ is an isomorphism outside $p$, so that

$$
K_{T}=\pi^{*} K_{S}+a E
$$

for some integer $a$. It suffices to check that $a=1$; we will give two proofs of this result.

Here is the first. We have already seen that $E \simeq \mathbb{P}^{1}$ and $E^{2}=-1$. So $K_{T} \cdot E=-1$ by 22.9 . On the other hand,

$$
-1=K_{T} \cdot E=\left(\pi^{*} K_{S}+a E\right) \cdot E=K_{S} \pi_{*} E+a E^{2}=-a .
$$

Thus $a=1$.
The second is by direct computation. Let $(x, y)$ be local coordinates on $S$. Then

$$
\omega=\mathrm{d} x \wedge \mathrm{~d} y
$$

is a meromorphic differential with no poles or zeroes in a neighbourhood of $p$. Local coordinates upstairs are $(x, t)$, where $y=x t$.

$$
\begin{aligned}
\pi^{*} \omega & =\mathrm{d} x \wedge \mathrm{~d}(x t) \\
& =\mathrm{d} x \wedge(t \mathrm{~d} x+x \mathrm{~d}(t) \\
& =t \mathrm{~d} x \wedge \mathrm{~d} x+x \mathrm{~d} x \wedge \mathrm{~d}(t) \\
& =x \mathrm{~d} x \wedge \mathrm{~d} t
\end{aligned}
$$

Thus the pullback of a meromorphic differential from $S$ always has a simple zero along $E$.

Lemma 22.11. Let $\pi: T \longrightarrow S$ be the blow up of a smooth point of $a$ smooth surface.

Then

$$
K_{T}^{2}=K_{S}^{2}-1
$$

Proof.

$$
K_{T}^{2}=K_{T} \cdot\left(\pi^{*} K_{S}+E\right)=K_{T} \cdot \pi^{*} K_{S}+K_{T} \cdot E=K_{S}^{2}-1
$$

