21. Riemann-Roch

One of the most interesting applications of sheaf cohomology are very useful formulae for the number of global sections.

Definition 21.1. Let $P(z) \in \mathbb{Q}[z]$ be a polynomial. We say that $P(z)$ is numerical if $P(n) \in \mathbb{Z}$ for any sufficiently large integer n.

Lemma 21.2.

(1) If $P(z)$ is a numerical polynomial then we may find integers $c_{0}, c_{1}, \ldots, c_{r}$ such that

$$
P(z)=c_{0}\binom{z}{r}+c_{1}\binom{z}{r-1}+\cdots+c_{r} .
$$

In particular $P(n) \in \mathbb{Z}$ for every $n \in \mathbb{Z}$.
(2) If $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ is any function and there is a numerical polynomial $Q(z)$ such that $\Delta(f)=f(n+1)-f(n)=Q(n)$ for n sufficiently large then there is a numerical polynomial $P(z)$ such that $f(n)=P(n)$ for n sufficiently large.

Proof. We prove (1) by induction on the degree r of P. Since

$$
\binom{z}{r}=\frac{z(z-1) \cdots(z-r+1)}{r!}=\frac{z^{r}}{r!}+\ldots,
$$

is a polynomial of degree n, they form a basis for all polynomials and we may certainly find rationals $c_{0}, c_{1}, \ldots, c_{r}$ such that

$$
P(z)=c_{0}\binom{z}{r}+c_{1}\binom{z}{r-1}+\cdots+c_{r} .
$$

Note that
$Q(z)=\Delta P(z)=P(z+1)-P(z)=c_{0}\binom{z}{r-1}+c_{1}\binom{z}{r-2}+\cdots+c_{r-1}$,
is a numerical polynomial. By induction on the degree, $c_{0}, c_{1}, \ldots, c_{r-1}$ are integers. It follows that c_{r} is an integer, as $P(n)$ is an integer for n large. This is (1).

For (2), suppose that

$$
Q(z)=c_{0}\binom{z}{r}+c_{1}\binom{z}{r-1}+\cdots+c_{r}
$$

for integers $c_{0}, c_{1}, \ldots, c_{r}$. Let

$$
P(z)=c_{0}\binom{z}{r+1}+c_{1}\binom{z}{r}+\cdots+c_{r}\binom{z}{1} .
$$

Then $\Delta P(z)=Q(z)$ so that $(f-P)(n)$ is a constant c_{r+1} for any n sufficiently large, so that $f(n)=P(n)+c_{r+1}$ for any n sufficiently large.

Theorem 21.3 (Asymptotic Riemann-Roch). Let X be a normal projective variety of dimension n and let $\mathcal{O}_{X}(1)$ be a very ample line bundle. Suppose that $X \subset \mathbb{P}^{k}$ has degree d.

Then

$$
h^{0}\left(X, \mathcal{O}_{X}(m)\right)=\frac{d m^{n}}{n!}+\ldots
$$

is a polynomial of degree n, for m large enough, with the given leading term.

Proof. First suppose that X is smooth. Let Y be a general hyperplane section. Then Y is smooth by Bertini. The trick is to compute $\chi\left(X, \mathcal{O}_{X}(m)\right)$ by looking at the exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}(m-1) \longrightarrow \mathcal{O}_{X}(m) \longrightarrow \mathcal{O}_{Y}(m) \longrightarrow 0 .
$$

The Euler characteristic is additive so that

$$
\chi\left(X, \mathcal{O}_{X}(m)\right)-\chi\left(X, \mathcal{O}_{X}(m-1)\right)=\chi\left(Y, \mathcal{O}_{Y}(m)\right) .
$$

(21.2) implies that $\chi\left(X, \mathcal{O}_{X}(m)\right)$ is a polynomial of degree n, with the given leading term. Now apply Serre vanishing.

For the general case we need that if X is normal and Y is a general hyperplane section, then Y is a normal projective variety of degree d. Y is regular in codimension one by a Bertini type argument and one can check that Y is S_{2}.

It is fun to use similar arguments to prove special cases of RiemannRoch.

Theorem 21.4 (Riemann-Roch for curves). Let C be a smooth projective curve of genus g and let D be a divisor of degree d.

$$
h^{0}\left(X, \mathcal{O}_{C}(D)\right)=d-g+1+h^{0}\left(C, \mathcal{O}_{C}\left(K_{C}-D\right)\right)
$$

Proof. We first check that

$$
\chi\left(C, \mathcal{O}_{C}(D)\right)=d-g+1
$$

We may write

$$
D=\sum a_{i} p_{i}
$$

We proceed by induction on $\sum\left|a_{i}\right|$. Let $p=p_{1}$. If $a_{1}>0$ then consider the short exact sequence

$$
0 \longrightarrow \mathcal{O}_{C}(D-p) \longrightarrow \mathcal{O}_{C}(D) \longrightarrow \mathcal{O}_{p} \longrightarrow 0
$$

The Euler characteristic is additive, so that

$$
\chi\left(C, \mathcal{O}_{C}(D)\right)=\chi\left(C, \mathcal{O}_{C}(D-p)\right)+1
$$

The LHS is equal to $(d-1)-g+1+1=d-g+1$ by induction. If $a_{1}<0$ then consider the short exact sequence

$$
0 \longrightarrow \mathcal{O}_{C}(D) \longrightarrow \mathcal{O}_{C}(D+p) \longrightarrow \mathcal{O}_{p} \longrightarrow 0
$$

The Euler characteristic is additive, so that

$$
\chi\left(C, \mathcal{O}_{C}(D)\right)=\chi\left(C, \mathcal{O}_{C}(D+p)\right)-1
$$

The RHS is equal to $d-g+1-1=(d-1)-g+1$ by induction.
So we are reduced to the case when $d=0$. Note that

$$
h^{1}\left(C, \mathcal{O}_{C}(D)\right)=h^{0}\left(C, \mathcal{O}_{C}\left(K_{C}-D\right)\right)
$$

by Serre duality. In particular

$$
\chi\left(C, \mathcal{O}_{C}\right)=1-g
$$

which completes the induction.
Theorem 21.5 (Riemann-Roch for surfaces). Let S be a smooth projective surface of irregularity q and geometric genus p_{g} over an algebraically closed field of characteristic zero. Let D be a divisor on S.

$$
\chi\left(S, \mathcal{O}_{S}(D)\right)=\frac{D^{2}}{2}-\frac{K_{S} \cdot D}{2}+1-q+p_{g}
$$

Proof. Pick a very ample divisor H such that $H+D$ is very ample. Let C and Σ be general elements of $|H|$ and $|H+D|$. Then C and Σ are smooth. There are two exact sequences

$$
0 \longrightarrow \mathcal{O}_{S}(D) \longrightarrow \mathcal{O}_{S}(D+H) \longrightarrow \mathcal{O}_{C}(D+H) \longrightarrow 0
$$

and

$$
0 \longrightarrow \mathcal{O}_{S} \longrightarrow \mathcal{O}_{S}(D+H) \longrightarrow \mathcal{O}_{\Sigma}(D+H) \longrightarrow 0
$$

As the Euler characteristic is additive we have

$$
\begin{aligned}
& \chi\left(S, \mathcal{O}_{S}(D+H)\right)=\chi\left(S, \mathcal{O}_{S}(D)\right)+\chi\left(C, \mathcal{O}_{C}(D+H)\right) \\
& \chi\left(S, \mathcal{O}_{S}(D+H)\right)=\chi\left(S, \mathcal{O}_{S}\right)+\chi\left(\Sigma, \mathcal{O}_{\Sigma}(D+H)\right) .
\end{aligned}
$$

Subtracting we get

$$
\chi\left(S, \mathcal{O}_{S}(D)\right)-\chi\left(S, \mathcal{O}_{S}\right)=\chi\left(\Sigma, \mathcal{O}_{\Sigma}(D+H)\right)-\chi\left(C, \mathcal{O}_{C}(D+H)\right)
$$

Now

$$
\begin{aligned}
& \chi\left(\Sigma, \mathcal{O}_{\Sigma}(D+H)\right)=(D+H) \cdot \Sigma-\operatorname{deg} K_{\Sigma} / 2 \\
& \chi\left(C, \mathcal{O}_{C}(D+H)\right)=(D+H) \cdot C-\operatorname{deg} K_{C} / 2
\end{aligned}
$$

applying Riemann-Roch for curves to both C and Σ. We have

$$
(D+H) \cdot \Sigma=(D+H) \cdot H+(D+H) \cdot D,
$$

and by adjunction

$$
K_{\Sigma}=\left(K_{S}+\Sigma\right) \cdot \Sigma \quad \text { and } \quad K_{C}=\left(K_{S}+C\right) \cdot C .
$$

So putting all of this together we get

$$
\begin{aligned}
\chi\left(S, \mathcal{O}_{S}(D)\right)-\chi\left(S, \mathcal{O}_{S}\right) & =(D+H) \cdot D+\frac{1}{2}\left(\left(K_{S}+C\right) \cdot C-\left(K_{S}+\Sigma\right) \cdot \Sigma\right) \\
& =(D+H) \cdot D+\frac{1}{2} K_{S} \cdot(C-\Sigma)+\frac{1}{2}(H \cdot H-(H+D) \cdot(H+D)) \\
& =\frac{D \cdot D}{2}-\frac{1}{2} K_{S} \cdot D
\end{aligned}
$$

We have

$$
c=\chi\left(S, \mathcal{O}_{S}\right)=h^{0}\left(S, \mathcal{O}_{S}\right)-h^{1}\left(S, \mathcal{O}_{S}\right)+h^{2}\left(S, \mathcal{O}_{S}\right)=1-q+p_{g} .
$$

Here we used the highly non-trivial fact that

$$
h^{1}\left(S, \mathcal{O}_{S}\right)=h^{0}\left(S, \Omega_{S}^{1}\right)=q,
$$

from Hodge theory and Serre duality

$$
h^{2}\left(S, \mathcal{O}_{S}\right)=h^{0}\left(S, \omega_{S}\right)=p_{g} .
$$

Remark 21.6. One can turn Riemann-Roch for surfaces around and use the arguments in the proof of (21.5) to prove basic properties of the intersection number.

