2. CARTIER DIVISORS

We now turn to the notion of a Cartier divisor.

Definition 2.1. Given a ring A, let S be the multiplicative set of nonzero divisors of A. The localisation A_S of A at S is called the **total** quotient ring of A.

Given a scheme X, let \mathcal{K} be the sheaf associated to the presheaf, which associates to every open subset $U \subset X$, the total quotient ring of $\Gamma(U, \mathcal{O}_X)$. \mathcal{K} is called the **sheaf of total quotient rings**.

Definition 2.2. A Cartier divisor on a scheme X is any global section of $\mathcal{K}^*/\mathcal{O}_X^*$.

In other words, a Cartier divisor is specified by an open cover U_i and a collection of rational functions f_i , such that f_i/f_j is a nowhere zero regular function.

A Cartier divisor is called **principal** if it is in the image of $\Gamma(X, \mathcal{K}^*)$. Two Cartier divisors D and D' are called **linearly equivalent**, denoted $D \sim D'$, if and only if the difference is principal.

Definition 2.3. Let X be a scheme satisfying (*). Then every Cartier divisor determines a Weil divisor.

Informally a Cartier divisor is simply a Weil divisor defined locally by one equation. If every Weil divisor is Cartier then we say that Xis **factorial**. This is equivalent to requiring that every local ring is a UFD; for example every smooth variety is factorial.

Example 2.4. The quadric cone Q, given by $xy - z^2 = 0$ in \mathbb{A}^3_k is not factorial. The line l, given by x = z = 0, is a Weil divisor which is not Cartier (one needs to check that the ideal $\langle x, z \rangle$ inside $\mathcal{O}_{Q,0}$ is not principal). The hyperplane x = 0 cuts out the double line 2l.

Definition-Lemma 2.5. Let X be a scheme.

The set of invertible sheaves forms an abelian group Pic(X), where multiplication corresponds to tensor product and the inverse to the dual.

Proof. It is clear that tensor product is commutative and associative and that \mathcal{O}_X plays the role of the identity. But if $\mathcal{M} = \text{Hom}(\mathcal{L}, \mathcal{O}_X)$ then

$$\mathcal{M} \underset{\mathcal{O}_X}{\otimes} \mathcal{L} \simeq \operatorname{Hom}(\mathcal{L}, \mathcal{L}) \simeq \mathcal{O}_X.$$

Definition 2.6. Let D be a Cartier divisor, represented by $\{(U_i, f_i)\}$. Define a subsheaf $\mathcal{O}_X(D) \subset \mathcal{K}$ by taking the subsheaf generated by f_i^{-1} over the open set U_i . **Proposition 2.7.** Let X be a scheme.

- (1) The association $D \longrightarrow \mathcal{O}_X(D)$ defines a correspondence between Cartier divisors and invertible subsheaves of \mathcal{K} .
- (2) If $\mathcal{O}_X(D_1 D_2) \simeq \mathcal{O}_X(D_1) \otimes \mathcal{O}_X(D_2)^{-1}$, as subsheaves of \mathcal{K}
- (3) Two Cartier divisors D_1 and D_2 are linearly equivalent if and only if $\mathcal{O}_X(D_1) \simeq \mathcal{O}_X(D_2)$ (not necessarily as subsheaves of \mathcal{K} .

Let's consider which Weil divisors on a toric variety are Cartier. We classify all Cartier divisors whose underlying Weil divisor is invariant; we dub these Cartier divisors *T*-Cartier. We start with the case of the affine toric variety associated to a cone $\sigma \subset N_{\mathbb{R}}$. By (2.7) it suffices to classify all invertible subsheaves $\mathcal{O}_X(D) \subset \mathcal{K}$. Taking global sections, since we are on an affine variety, it suffices to classify all fractional ideals,

$$I = H^0(X, \mathcal{O}_X(D)).$$

Invariance of D implies that I is graded by M, that is, I is a direct sum of eigenspaces. As D is Cartier, I is principal at the distinguished point x_{σ} of U_{σ} , so that $I/\mathfrak{m}I$ is one dimensional, where

$$\mathfrak{m} = \sum k \cdot \chi^u.$$

It follows that $I = A_{\sigma}\chi^{u}$, so that $D = (\chi^{u})$ is principal. In particular, the only Cartier divisors are the principal divisors and X is factorial if and only if the Class group is trivial.

Example 2.8. The quadric cone Q, given by $xy - z^2 = 0$ in \mathbb{A}^3_k is not factorial. We have already seen (1.13) that the class group is \mathbb{Z}_2 .

If $\sigma \subset N_{\mathbb{R}}$ is not maximal dimensional then every Cartier divisor on U_{σ} whose associated Weil divisor is invariant is of the form (χ^u) but

$$(\chi^u) = (\chi^{u'})$$
 if and only if $u - u' \in \sigma^{\perp} \cap M = M(\sigma)$.

So the T-Cartier divisors are in correspondence with $M/M(\sigma)$.

Now suppose that X = X(F) is a general toric variety. Then a T-Cartier divisor is given by specifying an element $u(\sigma) \in M/M(\sigma)$, for every cone σ in F. This defines a divisor $(\chi^{-u(\sigma)})$; equivalently a fractional ideal

$$I = H^0(X, \mathcal{O}_X(D)) = A_{\sigma} \cdot \chi^{u(\sigma)}.$$

These maps must agree on overlaps; if τ is a face of σ then $u(\sigma) \in M/M(\sigma)$ must map to $u(\tau) \in M/M(\tau)$.

The data

$$\{ u(\sigma) \in M/M(\sigma) \, | \, \sigma \in F \},\$$

for a *T*-Cartier divisor *D* determines a continuous piecewise linear function ϕ_D on the support |F| of *F*. If $v \in \sigma$ then let

$$\phi_D(v) = \langle u(\sigma), v \rangle.$$

Compatibility of the data implies that ϕ_D is well-defined and continuous. Conversely, given any continuous function ϕ , which is linear and integral (given by an element of M) on each cone, we can associate a unique *T*-Cartier divisor D. If $D = a_i D_i$ the function is given by $\phi_D(v_i) = -a_i$.

Note that

$$\phi_D + \phi_E = \phi_{D+E}$$
 and $\phi_{mD} = m\phi_D$

Note also that $\phi_{(\chi^u)}$ is the linear function given by u. So D and E are linearly equivalent if and only if ϕ_D and ϕ_E differ by a linear function. If X is any variety which satisfies (*) then the natural map

$$\mathbf{D}^{*}(\mathbf{X}) = \mathbf{O}^{*}(\mathbf{X})$$

$$\operatorname{Pic}(X) \longrightarrow \operatorname{Cl}(X)$$

is an embedding. It is an interesting to compare $\operatorname{Pic}(X)$ and $\operatorname{Cl}(X)$ on a toric variety. Denote by $\operatorname{Div}_T(X)$ the group of *T*-Cartier divisors.

Proposition 2.9. Let X = X(F) be the toric variety associated to a fan F which spans $N_{\mathbb{R}}$. Then there is a commutative diagram with exact rows:

In particular

 $\rho(X) = \operatorname{rank}(\operatorname{Pic}(X)) \le \operatorname{rank}(\operatorname{Cl}(X)) = s - n.$

Further Pic(X) is a free abelian group.

Proof. We have already seen that the bottom row is exact. If \mathcal{L} is an invertible sheaf then $\mathcal{L}|_U$ is trivial. Suppose that $\mathcal{L} = \mathcal{O}_X(E)$. Pick a rational function such that $(f)|_U = E|_U$. Let D = E - (f). Then D is T-Cartier and exactness of the top row is easy.

Finally, $\operatorname{Pic}(X)$ is subgroup of the direct sum of $M/M(\sigma)$ and each of these is a lattice, whence $\operatorname{Pic}(X)$ is torsion free.