
2. Cartier Divisors

We now turn to the notion of a Cartier divisor.

Definition 2.1. Given a ring A, let S be the multiplicative set of non-
zero divisors of A. The localisation AS of A at S is called the total
quotient ring of A.

Given a scheme X, let K be the sheaf associated to the presheaf,
which associates to every open subset U ⊂ X, the total quotient ring of
Γ(U,OX). K is called the sheaf of total quotient rings.

Definition 2.2. A Cartier divisor on a scheme X is any global
section of K∗/O∗X .

In other words, a Cartier divisor is specified by an open cover Ui and
a collection of rational functions fi, such that fi/fj is a nowhere zero
regular function.

A Cartier divisor is called principal if it is in the image of Γ(X,K∗).
Two Cartier divisorsD andD′ are called linearly equivalent, denoted
D ∼ D′, if and only if the difference is principal.

Definition 2.3. Let X be a scheme satisfying (∗). Then every Cartier
divisor determines a Weil divisor.

Informally a Cartier divisor is simply a Weil divisor defined locally
by one equation. If every Weil divisor is Cartier then we say that X
is factorial. This is equivalent to requiring that every local ring is a
UFD; for example every smooth variety is factorial.

Example 2.4. The quadric cone Q, given by xy− z2 = 0 in A3
k is not

factorial. The line l, given by x = z = 0, is a Weil divisor which is
not Cartier (one needs to check that the ideal 〈x, z〉 inside OQ,0 is not
principal). The hyperplane x = 0 cuts out the double line 2l.

Definition-Lemma 2.5. Let X be a scheme.
The set of invertible sheaves forms an abelian group Pic (X), where

multiplication corresponds to tensor product and the inverse to the dual.

Proof. It is clear that tensor product is commutative and associative
and that OX plays the role of the identity. But if M = Hom(L,OX)
then

M ⊗
OX

L ' Hom(L,L) ' OX . �

Definition 2.6. Let D be a Cartier divisor, represented by {(Ui, fi)}.
Define a subsheaf OX(D) ⊂ K by taking the subsheaf generated by f−1i
over the open set Ui.
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Proposition 2.7. Let X be a scheme.

(1) The association D −→ OX(D) defines a correspondence be-
tween Cartier divisors and invertible subsheaves of K.

(2) If OX(D1 −D2) ' OX(D1)⊗OX(D2)
−1, as subsheaves of K

(3) Two Cartier divisors D1 and D2 are linearly equivalent if and
only if OX(D1) ' OX(D2) (not necessarily as subsheaves of K.

Let’s consider which Weil divisors on a toric variety are Cartier. We
classify all Cartier divisors whose underlying Weil divisor is invariant;
we dub these Cartier divisors T -Cartier. We start with the case of the
affine toric variety associated to a cone σ ⊂ NR. By (2.7) it suffices to
classify all invertible subsheaves OX(D) ⊂ K. Taking global sections,
since we are on an affine variety, it suffices to classify all fractional
ideals,

I = H0(X,OX(D)).

Invariance of D implies that I is graded by M , that is, I is a direct
sum of eigenspaces. As D is Cartier, I is principal at the distinguished
point xσ of Uσ, so that I/mI is one dimensional, where

m =
∑

k · χu.

It follows that I = Aσχ
u, so that D = (χu) is principal. In particular,

the only Cartier divisors are the principal divisors and X is factorial if
and only if the Class group is trivial.

Example 2.8. The quadric cone Q, given by xy− z2 = 0 in A3
k is not

factorial. We have already seen (1.13) that the class group is Z2.

If σ ⊂ NR is not maximal dimensional then every Cartier divisor on
Uσ whose associated Weil divisor is invariant is of the form (χu) but

(χu) = (χu
′
) if and only if u− u′ ∈ σ⊥ ∩M = M(σ).

So the T -Cartier divisors are in correspondence with M/M(σ).
Now suppose that X = X(F ) is a general toric variety. Then a

T -Cartier divisor is given by specifying an element u(σ) ∈ M/M(σ),
for every cone σ in F . This defines a divisor (χ−u(σ)); equivalently a
fractional ideal

I = H0(X,OX(D)) = Aσ · χu(σ).

These maps must agree on overlaps; if τ is a face of σ then u(σ) ∈
M/M(σ) must map to u(τ) ∈M/M(τ).

The data

{u(σ) ∈M/M(σ) |σ ∈ F },
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for a T -Cartier divisor D determines a continuous piecewise linear func-
tion φD on the support |F | of F . If v ∈ σ then let

φD(v) = 〈u(σ), v〉.
Compatibility of the data implies that φD is well-defined and continu-
ous. Conversely, given any continuous function φ, which is linear and
integral (given by an element of M) on each cone, we can associate
a unique T -Cartier divisor D. If D = aiDi the function is given by
φD(vi) = −ai.

Note that

φD + φE = φD+E and φmD = mφD.

Note also that φ(χu) is the linear function given by u. So D and E are
linearly equivalent if and only if φD and φE differ by a linear function.

If X is any variety which satisfies (∗) then the natural map

Pic(X) −→ Cl(X),

is an embedding. It is an interesting to compare Pic(X) and Cl(X) on
a toric variety. Denote by DivT (X) the group of T -Cartier divisors.

Proposition 2.9. Let X = X(F ) be the toric variety associated to
a fan F which spans NR. Then there is a commutative diagram with
exact rows:

0 - M - DivT (X) - Pic(X) - 0

‖

0 - M - Zs
?

∩

- Cl(X)
?

- 0

In particular

ρ(X) = rank(Pic(X)) ≤ rank(Cl(X)) = s− n.
Further Pic(X) is a free abelian group.

Proof. We have already seen that the bottom row is exact. If L is an
invertible sheaf then L|U is trivial. Suppose that L = OX(E). Pick a
rational function such that (f)|U = E|U . Let D = E − (f). Then D is
T -Cartier and exactness of the top row is easy.

Finally, Pic(X) is subgroup of the direct sum of M/M(σ) and each
of these is a lattice, whence Pic(X) is torsion free. �
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