17. Higher vanishing

Theorem 17.1. Let X be a noetherian topological space of dimension n.

Then

$$H^i(X, \mathcal{F}) = 0,$$

for all i > n and any sheaf of abelian groups.

The basic idea is to reduce to the case of the quotient of \mathbb{Z}_U . The first thing is to reduce to the finitely generated case. Recall that any ring is the direct limit of its finitely generated subrings, so really all we need is a couple of standard results about direct limits.

Suppose A is a directed set and (\mathcal{F}_{α}) is a direct system of sheaves indexed by A. Then we may take the direct limit $\lim_{n \to \infty} \mathcal{F}_{\alpha}$.

Lemma 17.2. On a noetherian topological space, the direct limit of flasque is flasque.

Proof. Suppose (\mathcal{F}_{α}) is a direct system of flasque sheaves. Suppose that $V \subset U$ are open subsets. For each i we have a surjection

$$\mathcal{F}_{\alpha}(U) \longrightarrow \mathcal{F}_{\alpha}(V).$$

Now <u>lim</u> is an exact functor, so

$$\varinjlim \mathcal{F}_{\alpha}(U) \longrightarrow \varinjlim \mathcal{F}_{\alpha}(V),$$

is surjective. But on a noetherian topological space we have

$$(\varinjlim \mathcal{F}_{\alpha})(U) = \varinjlim \mathcal{F}_{\alpha}(U),$$

and so

$$(\varinjlim \mathcal{F}_{\alpha})(U) \longrightarrow (\varinjlim \mathcal{F}_{\alpha})(V),$$

is surjective, so that $\varinjlim \mathcal{F}_{\alpha}$ is flasque.

Proposition 17.3. Let X be a noetherian topological space and let (\mathcal{F}_{α}) be a direct system of abelian sheaves indexed by A.

Then there are natural isomorphisms

$$\varinjlim H^i(X, \mathcal{F}_{\alpha}) \longrightarrow H^i(X, \varinjlim \mathcal{F}_{\alpha})$$

Proof. By definition of the limit, for each α , there are maps $\mathcal{F}_{\alpha} \longrightarrow \lim \mathcal{F}_{\alpha}$. This gives a map on cohomology

$$H^i(X, \mathcal{F}_{\alpha}) \longrightarrow H^i(X, \lim \mathcal{F}_{\alpha}).$$

Taking the limit of these maps gives a morphism

$$\underline{\lim} H^i(X, \mathcal{F}_{\alpha}) \longrightarrow H^i(X, \underline{\lim} \mathcal{F}_{\alpha}).$$

It is easy to check that this is an isomorphism for i = 0.

The general case follows using the notion of a δ -functor; see (III.2.9).

Lemma 17.4. Let $Y \subset X$ be a closed subset of a topological space, let \mathcal{F} be a sheaf of abelian groups on Y and let $j: Y \hookrightarrow X$ be the natural inclusion.

Then

$$H^i(Y, \mathcal{F}) \simeq H^i(X, j_*\mathcal{F}).$$

Proof. Suppose that \mathcal{I}^{\bullet} is a flasque resolution of \mathcal{F} . Then $j_*\mathcal{I}^{\bullet}$ is a flasque resolution of $j_*\mathcal{F}$.

It is customary to abuse notation and consider \mathcal{F} as a sheaf on X, without bothering to write $j_*\mathcal{F}$.

Proof of (17.1). We introduce some convenient notation. Let \mathcal{F} be a sheaf on X. If $Y \subset X$ is a closed subset then \mathcal{F}_Y denotes the extension by zero of the sheaf $\mathcal{F}|_Y$; similarly if $U \subset X$ is an open subset, then \mathcal{F}_U denotes the extension by zero of the sheaf $\mathcal{F}|_U$. Note that if U = X - Y then there is an exact sequence

$$0 \longrightarrow \mathcal{F}_U \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}_Y \longrightarrow 0.$$

The proof proceeds by Noetherian induction and induction on $n = \dim X$.

Step 1: We reduce to the case X is irreducible. We proceed by induction on the number m of irreducible components of X. If m = 1 there is nothing to prove. Otherwise let Y be an irreducible component of X and let U = X - Y. Let Z be the closure of U. Then \mathcal{F}_U can be considered as a sheaf on Z, which has m - 1 irreducible components. By induction on m,

$$H^i(Y, \mathcal{F}|_Y) = H^i(Z, \mathcal{F}_U) = 0,$$

for all i > n, and so

$$H^i(X, \mathcal{F}) = 0,$$

for all i > n, by considering the long exact sequence of cohomology associated to the short exact sequence

$$0 \longrightarrow \mathcal{F}_U \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}_Y \longrightarrow 0.$$

So we may assume that X is irreducible.

Step 2: Suppose that n = 0. Then X and the empty set are the only open subsets of X. In this case, to give a sheaf on X is the same as to give an abelian group, and it clear that taking global sections is an exact functor. But then

$$H^i(X, \mathcal{F}) = 0,$$

for all i > 0.

Thus we may assume that n > 0.

Step 3: Let

$$B = \bigcup_{U} \mathcal{F}(U),$$

and let A be the set of all finite subsets of B. Given $\alpha \in A$, let \mathcal{F}_{α} be the subsheaf of \mathcal{F} generated by the elements of α . Then A is a directed set and $\mathcal{F} = \lim_{\alpha} \mathcal{F}_{\alpha}$. By (17.3) we may therefore assume that \mathcal{F} is finitely generated.

Step 4: Suppose that $\beta \subset \alpha$ and let r be the cardinality of the difference. Then there is an exact sequence

$$0 \longrightarrow \mathcal{F}_{\beta} \longrightarrow \mathcal{F}_{\alpha} \longrightarrow \mathcal{G} \longrightarrow 0$$
,

where \mathcal{G} is generated by r elements. So by induction on r and the long exact sequence of cohomology associated to the short exact sequence above, we are reduced to the case when \mathcal{F} is generated by a single element, so that \mathcal{F} is a quotient of \mathbb{Z}_U for some open subset U,

$$0 \longrightarrow \mathcal{R} \longrightarrow \mathbb{Z}_U \longrightarrow \mathcal{F} \longrightarrow 0.$$

Step 5: We reduce to the case when $\mathcal{F} = \mathbb{Z}_U$.

For each $x \in U$, $\mathcal{R}_x \subset \mathbb{Z}_x = \mathbb{Z}$. If $\mathcal{R} = 0$ there is nothing to prove; otherwise let d be the smallest positive integer which appears in \mathcal{R}_x . Then

$$\mathcal{R}|_{V} = d \cdot \mathbb{Z}|_{V},$$

for some non-empty open subset $V \subset U$. In this case, we have an exact sequence

$$0 \longrightarrow \mathbb{Z}_V \longrightarrow \mathcal{R} \longrightarrow \mathcal{Q} \longrightarrow 0.$$

Now Q is supported on a smaller set and so

$$H^i(X, \mathcal{Q}) = 0,$$

for all $i \geq n$. Taking the long exact sequence of cohomology, we see that

$$H^i(X, \mathcal{R}) = H^i(X, \mathbb{Z}_V),$$

for all i > n.

Thus we may assume that $\mathcal{F} = \mathbb{Z}_U$.

Step 6: Consider the short exact sequence

$$0 \longrightarrow \mathbb{Z}_U \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}_Y \longrightarrow 0,$$

where Y = X - U. By induction on the dimension,

$$H^i(X, \mathbb{Z}_Y) = 0,$$

for all $i \geq n$. Thus

$$H^i(X, \mathbb{Z}_U) = H^i(X, \mathbb{Z}),$$

for all i > n. But \mathbb{Z} is a locally constant sheaf on an irreducible space, so that \mathbb{Z} is flasque, and flasque is acyclic.