14. Smoothness

Definition 14.1. A variety is **smooth** (aka non-singular) if all of its local rings are regular local rings.

Theorem 14.2. The localisation of any regular local ring at a prime ideal is a regular local ring.

Thus to check if a variety is smooth it is enough to consider only the closed points.

Theorem 14.3. Let X be an irreducible separate scheme of finite type over an algebraically closed field k.

Then $\Omega_{X/k}$ is locally free of rank $n = \dim X$ if and only if X is a smooth variety over k.

If $X \longrightarrow Z$ is a morphism of schemes and $Y \subset X$ is a closed subscheme, with ideal sheaf \mathcal{I} . Then there is an exact sequence of sheaves on Z,

$$\frac{\mathcal{I}}{\mathcal{I}^2} \longrightarrow \Omega_{X/Z} \otimes \mathcal{O}_Y \longrightarrow \Omega_{Y/Z} \longrightarrow 0.$$

Theorem 14.4. Let X be a smooth variety of dimension n. Let $Y \subset X$ be an irreducible closed subscheme with sheaf of ideals \mathcal{I} .

Then Y is smooth if and only if

- (1) $\Omega_{Y/k}$ is locally free, and
- (2) the sequence above is also left exact:

$$0 \longrightarrow \frac{\mathcal{I}}{\mathcal{I}^2} \longrightarrow \Omega_{X/k} \otimes \mathcal{O}_Y \longrightarrow \Omega_{Y/k} \longrightarrow 0.$$

Furthermore, in this case, \mathcal{I} is locally generated by $r = \operatorname{codim}(Y, X)$ elements and $\frac{\mathcal{I}}{\mathcal{T}^2}$ is locally free of rank r on Y.

Proof. Suppose (1) and (2) hold. Then $\Omega_{Y/k}$ is locally free and so we only have to check that its rank q is equal to the dimension of Y. Then $\mathcal{I}/\mathcal{I}^2$ is locally free of rank n-q. Nakayama's lemma implies that \mathcal{I} is locally generated by n-q elements and so dim $Y \ge n-(n-q) = q$. On the other hand, if $y \in Y$ is any closed point $q = \dim_k(\mathfrak{m}/\mathfrak{m}^2)$ and so $q \ge \dim Y$. Thus $q = \dim Y$. This also establishes the last statement.

Now suppose that Y is smooth. Then $\Omega_{Y/k}$ is locally free of rank $q = \dim Y$ and so (1) is immediate. On the other hand, there is an exact sequence

$$\frac{\mathcal{I}}{\mathcal{I}^2} \longrightarrow \Omega_{X/k} \otimes \mathcal{O}_Y \longrightarrow \Omega_{Y/k} \longrightarrow 0.$$

Pick a closed point $y \in Y$. As $\mathcal{I}/\mathcal{I}^2$ is locally free of rank r = n - q, we may pick sections x_1, x_2, \ldots, x_r of \mathcal{I} such that dx_1, dx_2, \ldots, dx_r generate the kernel of the second map.

Let $Y' \subset X$ be the corresponding closed subscheme. Then, by construction, dx_1, dx_2, \ldots, dx_r generate a free subsheaf of rank r of $\Omega_{X/k} \otimes \mathcal{O}_{Y'}$ in a neighbourhood of y. It follows that for the exact sequence for Y'

$$\frac{\mathcal{I}'}{\mathcal{I}'^2} \longrightarrow \Omega_{X/Z} \otimes \mathcal{O}_Y \longrightarrow \Omega_{Y'/Z} \longrightarrow 0,$$

the first map is injective and $\Omega_{Y'/k}$ is locally free of rank n-r. But then Y' is smooth and dim $Y' = \dim Y$. As $Y \subset Y'$ and Y' is integral, we must have Y = Y' and this gives (2).

Theorem 14.5 (Bertini's Theorem). Let $X \subset \mathbb{P}_k^n$ be a closed smooth projective variety. Then there is a hyperplane $H \subset \mathbb{P}_k^n$, not containing X, such that $H \cap X$ is regular at every point.

Furthermore the set of such hyperplanes forms an open dense subset of the linear system $|H| \simeq \mathbb{P}_k^n$.

Proof. Let $x \in X$ be a closed point. Call a hyperplane H bad if either H contains X or H does not contain X but it does contain x and $X \cap H$ is not regular at x. Let B_x be the set of all bad hyperplanes at x. Fix a hyperplane H_0 not containing x, defined by $f_0 \in V = H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1))$. Define a map

$$\phi_x\colon V\longrightarrow \mathcal{O}_{X,x}/\mathfrak{m}^2,$$

as follows. Given by $f \in V$, f/f_0 is a regular function on $X - X \cap X_0$. Send f to the image of f/f_0 to its class in the quotient $\mathcal{O}_{X,x}/\mathfrak{m}^2$. Now $x \in X \cap H$ if and only if $\phi_x(f) \in \mathfrak{m}$ and $x \in X \cap H$ is a regular point if and only if $\phi_x(f) \neq 0$.

Thus B_x is precisely the kernel of ϕ_x . Now as k is algebraically closed and x is a closed point, ϕ_x is surjective. If dim X = r then $\mathcal{O}_{X,x}/\mathfrak{m}^2$ has dimension r+1 and so B_x is a linear subspace of |H| of dimension n-r-1.

Let $B \subset X \times |H|$ be the set of pairs (x, H) where $H \in B_x$. Then B is a closed subset. Let $p: B \longrightarrow X$ and $q: B \longrightarrow |H|$ denote projection onto either factor. p is surjective, with irreducible fibres of dimension n - r - 1. It follows that B is irreducible of dimension r + (n - r - 1) = n - 1. The image of q has dimension at most n - 1. Hence q(B) is a proper closed subset of |H|. \Box

Remark 14.6. We will see later that $H \cap X$ is in fact connected, whence irreducible, so that in fact $Y = H \cap X$ is a smooth subvariety.

Definition 14.7. Let X be a smooth variety. The **tangent sheaf** $\mathcal{T}_X = \mathbf{Hom}_{\mathcal{O}_X}(\Omega_{X/k}, \mathcal{O}_X).$

Note that the tangent sheaf is a locally free sheaf of rank equal to the dimension of X.