13. KÄHLER DIFFERENTIALS

Let A be a ring, B an A-algebra and M a B-module.
Definition 13.1. An A-derivation of B into M is a map $\mathrm{d}: B \longrightarrow$ M such that
(1) $\mathrm{d}\left(b_{1}+b_{2}\right)=\mathrm{d} b_{1}+\mathrm{d} b_{2}$.
(2) $\mathrm{d}\left(b b^{\prime}\right)=b^{\prime} \mathrm{d} b+b \mathrm{~d} b^{\prime}$.
(3) $\mathrm{d} a=0$.

Definition 13.2. The module of relative differentials, denoted $\Omega_{B / A}$, is a B-module together with an A-derivation, $\mathrm{d}: B \longrightarrow \Omega_{B / A}$, which is universal with this property:

If M is a B-module and $\mathrm{d}^{\prime}: B \longrightarrow M$ is an A-derivation then there exists a unique B-module homomorphism $f: \Omega_{B / A} \longrightarrow M$ which makes the following diagram commute:

One can construct the module of relative differentials in the usual way; take the free B-module, with generators

$$
\{\mathrm{d} b \mid b \in B\}
$$

and quotient out by the three obvious sets of relations
(1) $\mathrm{d}\left(b_{1}+b_{2}\right)-\mathrm{d} b_{1}-\mathrm{d} b_{2}$,
(2) $\mathrm{d}\left(b b^{\prime}\right)-b^{\prime} \mathrm{d} b-b \mathrm{~d} b^{\prime}$, and
(3) $\mathrm{d} a$.

The map d: $B \longrightarrow M$ is the obvious one.
Example 13.3. Let $B=A\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Then $\Omega_{B / A}$ is the free B module generated by $\mathrm{d} x_{1}, \mathrm{~d} x_{2}, \ldots, \mathrm{~d} x_{n}$.

Proposition 13.4. Let A^{\prime} and B be A-algebras and $B^{\prime}=B \underset{A}{\otimes} A^{\prime}$. Then

$$
\Omega_{B^{\prime} / A^{\prime}}=\Omega_{B^{\prime} / A}{\underset{B}{\otimes}} B^{\prime}
$$

Furthermore, if S is a multiplicative system in B, then

$$
\Omega_{S^{-1} B / A}=S^{-1} \Omega_{B / A} .
$$

Suppose that $X=\operatorname{Spec} B \longrightarrow Y=\operatorname{Spec} A$ is a morphism of affine schemes. The sheaf of relative differentials $\Omega_{X / Y}$ is the quasicoherent sheaf associated to the module of relative differentials $\Omega_{B / A}$.

Example 13.5. Let $X=\operatorname{Spec} \mathbb{R}$ and $Y=\operatorname{Spec} \mathbb{Q}$. Then $\mathrm{d} \pi \in \Omega_{X / Y}=$ $\Omega_{\mathbb{R} / \mathbb{Q}}$ is a non-zero differential.

One could use the affine case to construct the sheaf of relative differentials globally. A better way to proceed is to use a little bit more algebra (and geometric intuition):

Proposition 13.6. Let B be an A-algebra. Let

$$
B \underset{A}{\otimes} B \longrightarrow B
$$

be the diagonal morphism $b \otimes b^{\prime} \longrightarrow b b^{\prime}$ and let I be the kernel. Consider $B \otimes B$ as a B-module by multiplication on the left. Then I / I^{2} inherits the structure of a B-module. Define a map

$$
\mathrm{d}: B \longrightarrow \frac{I}{I^{2}},
$$

by the rule

$$
\mathrm{d} b=1 \otimes b-b \otimes 1
$$

Then I / I^{2} is the module of differentials.
Now suppose we are given a morphism of schemes $f: X \longrightarrow Y$. This induces the diagonal morphism

$$
\Delta: X \longrightarrow X \underset{Y}{\times} X
$$

Then Δ defines an isomorphism of X with its image $\Delta(X)$ and this is locally closed in $X \underset{Y}{\times} X$, that is, there is an open subset $W \subset X \underset{Y}{\times} X$ and $\Delta(X)$ is a closed subset of W (it is closed in $X \underset{Y}{\times} X$ if and only if X is separated).

Definition 13.7. Let \mathcal{I} be the sheaf of ideals of $\Delta(X)$ inside W. The sheaf of relative differentials

$$
\Omega_{X / Y}=\Delta^{*}\left(\frac{\mathcal{I}}{\mathcal{I}^{2}}\right)
$$

Theorem 13.8 (Euler sequence). Let A be a ring, let $Y=\operatorname{Spec} A$ and $X=\mathbb{P}_{A}^{n}$.

Then there is a short exact sequence of \mathcal{O}_{X}-modules

$$
0 \longrightarrow \Omega_{X / Y} \longrightarrow \mathcal{O}_{X}(-1)^{n+1} \longrightarrow \mathcal{O}_{X} \longrightarrow 0
$$

Proof. Let $S=A\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ be the homogeneous coordinate ring of X. Let E be the graded S-module $S(-1)^{n+1}$, with basis $e_{0}, e_{1}, \ldots, e_{n}$ in degree one. Define a (degree 0) homomorphism of graded S-modules
$E \longrightarrow S$ by sending $e_{i} \longrightarrow x_{i}$ and let M be the kernel. We have a left exact sequence

$$
0 \longrightarrow M \longrightarrow E \longrightarrow S
$$

This gives rise to a short exact sequence of \mathcal{O}_{X}-modules,

$$
0 \longrightarrow \tilde{M} \longrightarrow \mathcal{O}_{X}(-1)^{n+1} \longrightarrow \mathcal{O}_{X} \longrightarrow 0
$$

Note that even though $E \longrightarrow S$ is not surjective, it is surjective in all non-negative degrees, so that the map of sheaves is surjective.

It remains to show that $\tilde{M} \simeq \Omega_{X / Y}$. First note that if we localise at x_{i}, then $E_{x_{i}} \longrightarrow S_{x_{i}}$ is a surjective homomorphism of free $S_{x_{i}}$-modules, so that $M_{x_{i}}$ is a free $S_{x_{i}}$-module of rank n, generated by

$$
\left\{\left.e_{j}-\frac{x_{j}}{x_{i}} e_{i} \right\rvert\, j \neq i\right\}
$$

It follows that if U_{i} is the standard open affine subset of X defined by x_{i} then $\left.\tilde{M}\right|_{U_{i}}$ is a free $\mathcal{O}_{U_{i}}$-module of rank n generated by the sections

$$
\left\{\left.\frac{1}{x_{i}} e_{j}-\frac{x_{j}}{x_{i}^{2}} e_{i} \right\rvert\, j \neq i\right\} .
$$

(We need the extra factor of x_{i} to get elements of degree zero.)
We define a map

$$
\phi_{i}:\left.\left.\Omega_{X / Y}\right|_{U_{i}} \longrightarrow \tilde{M}\right|_{U_{i}},
$$

as follows. As $U_{i}=\operatorname{Spec} k\left[\frac{x_{0}}{x_{i}}, \frac{x_{1}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right]$, it follows that $\Omega_{X / Y}$ is the free $\mathcal{O}_{U_{i}}$-module generated by

$$
\mathrm{d}\left(\frac{x_{0}}{x_{i}}\right), \mathrm{d}\left(\frac{x_{1}}{x_{i}}\right), \ldots, \mathrm{d}\left(\frac{x_{n}}{x_{i}}\right) .
$$

So we define ϕ_{i} by the rule

$$
\mathrm{d}\left(\frac{x_{j}}{x_{i}}\right) \longrightarrow \frac{1}{x_{i}} e_{j}-\frac{x_{j}}{x_{i}^{2}} e_{i} .
$$

ϕ_{i} is clearly an isomorphism. We check that we can glue these maps to a global isomorphism,

$$
\phi: \Omega_{X / Y} \longrightarrow \tilde{M}
$$

On $U_{i} \cap U_{j}$, we have

$$
\left(\frac{x_{k}}{x_{i}}\right)=\left(\frac{x_{k}}{x_{j}}\right)\left(\frac{x_{j}}{x_{i}}\right) .
$$

Hence in $\left.\left(\Omega_{X / Y}\right)\right|_{U_{i} \cap U_{j}}$ we have

$$
\mathrm{d}\left(\frac{x_{k}}{x_{i}}\right)-\frac{x_{k}}{x_{j}} \mathrm{~d}\left(\frac{x_{j}}{x_{i}}\right)=\frac{x_{j}}{x_{i}} \mathrm{~d}\left(\frac{x_{k}}{x_{j}}\right) .
$$

If we apply ϕ_{i} to the LHS and ϕ_{j} to the RHS, we get the same thing, namely

$$
\frac{1}{x_{i} x_{j}}\left(x_{j} e_{k}-x_{k} e_{j}\right) .
$$

Thus the isomorphisms ϕ_{i} glue together.

