10. Relative proj and projective Bundles

We want to define a relative version of Proj, in pretty much the same way we defined a relative version of Spec. We start with a scheme X and a quasi-coherent sheaf \mathcal{S} sheaf of graded \mathcal{O}_{X}-algebras,

$$
\mathcal{S}=\bigoplus_{d \in \mathbb{N}} \mathcal{S}_{d}
$$

where $\mathcal{S}_{0}=\mathcal{O}_{X}$. It is convenient to make some simplifying assumptions:
(\dagger) $\quad X$ is Noetherian, \mathcal{S}_{1} is coherent, \mathcal{S} is locally generated by \mathcal{S}_{1}.
To construct relative Proj, we cover X by open affines $U=\operatorname{Spec} A$. With a view towards what comes next, we denote global sections of \mathcal{S} over U by $H^{0}(U, \mathcal{S})$. Then $\mathcal{S}(U)=H^{0}(U, \mathcal{S})$ is a graded A-algebra, and we get $\pi_{U}: \operatorname{Proj} \mathcal{S}(U) \longrightarrow U$ a projective morphism. If $f \in A$ then we get a commutative diagram

It is not hard to glue π_{U} together to get $\pi: \operatorname{Proj} \mathcal{S} \longrightarrow X$. We can also glue the invertible sheaves together to get an invertible sheaf $\mathcal{O}(1)$.

The relative consruction has some similarities to the old construction.
Example 10.1. If X is Noetherian and

$$
\mathcal{S}=\mathcal{O}_{X}\left[T_{0}, T_{1}, \ldots, T_{n}\right],
$$

then satisfies \dagger and $\operatorname{Proj} \mathcal{S}=\mathbb{P}_{X}^{n}$.
Given a sheaf \mathcal{S} satisfying \dagger), and an invertible sheaf \mathcal{L}, it is easy to construct a quasi-coherent sheaf $\mathcal{S}^{\prime}=\mathcal{S} \star \mathcal{L}$, which satisfies $\dagger \downarrow$. The graded pieces of \mathcal{S}^{\prime} are $\mathcal{S}_{d} \otimes \mathcal{L}^{d}$ and the multiplication maps are the obvious ones. There is a natural isomorphism

$$
\phi: P^{\prime}=\operatorname{Proj} \mathcal{S}^{\prime} \longrightarrow P=\operatorname{Proj} \mathcal{S},
$$

which makes the diagram commute

and

$$
\phi^{*} \mathcal{O}_{P}(1) \simeq \underset{1}{\mathcal{O}_{P^{\prime}}(1) \otimes \pi^{*} \mathcal{L} ~}
$$

Note that π is always proper; in fact π is projective over any open affine and properness is local on the base. Even better π is projective if X has an ample line bundle; see (II.7.10).

There are two very interesting families of examples of the construction of relative Proj. Suppose that we start with a locally free sheaf \mathcal{E} of rank $r \geq 2$. Note that

$$
\mathcal{S}=\bigoplus \operatorname{Sym}^{d} \mathcal{E}
$$

satisfies (†). $\mathbb{P}(\mathcal{E})=\operatorname{Proj} \mathcal{S}$ is the projective bundle over X associated to \mathcal{E}. The fibres of $\pi: \mathbb{P}(\mathcal{E}) \longrightarrow X$ are copies of \mathbb{P}^{n}, where $n=r-1$. We have

$$
\bigoplus_{l=0}^{\infty} \pi_{*} \mathcal{O}_{\mathbb{P}(\mathcal{E})}(l)=\mathcal{S},
$$

so that in particular

$$
\pi_{*} \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)=\mathcal{E}
$$

Also there is a natural surjection

$$
\pi^{*} \mathcal{E} \longrightarrow \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)
$$

Indeed, it suffices to check both statements locally, so that we may assume that X is affine. The first statement is standard and the second statement reduces to the statement that the sections $x_{0}, x_{1}, \ldots, x_{n}$ generate $\mathcal{O}_{P}(1)$.

The most interesting result is:

Proposition 10.2. Let $g: Y \longrightarrow X$ be a morphism.

Then a morphism $f: Y \longrightarrow \mathbb{P}(\mathcal{E})$ over X is the same as giving an invertible sheaf \mathcal{L} on Y and a surjection $g^{*} \mathcal{E} \longrightarrow \mathcal{L}$.

Proof. One direction is clear; if $f: Y \longrightarrow \mathbb{P}(\mathcal{E})$ is a morphism over X, then the surjective morphism of sheaves

$$
\pi^{*} \mathcal{E} \longrightarrow \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)
$$

pulls back to a surjective morphism

$$
g^{*} \mathcal{E}=f^{*}\left(\pi^{*} \mathcal{E}\right) \longrightarrow \mathcal{L}=f^{*} \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)
$$

Conversely suppose we are given an invertible sheaf \mathcal{L} and a surjective morphism of sheaves

$$
g^{*} \mathcal{E} \longrightarrow \mathcal{L}
$$

I claim that there is then a unique morphism $f: Y \longrightarrow \mathbb{P}(\mathcal{E})$ over X, which induces the given surjection. By uniqueness, it suffices to prove
this result locally. So we may assume that $X=\operatorname{Spec} A$ is affine and

$$
\mathcal{E}=\bigoplus_{i=0}^{n} \mathcal{O}_{X}
$$

is free. In this case surjectivity reduces to the statement that the images $s_{0}, s_{1}, \ldots, s_{n}$ of the standard sections generate \mathcal{L}, and the result reduces to one we have already proved.

