
1. Weil Divisors

Definition 1.1. We say that a scheme X is regular in codimension
one if every local ring of dimension one is regular, that is, the quotient
m/m2 is one dimensional, where m is the unique maximal ideal of the
corresponding local ring.

Regular in codimension one often translates to smooth in codimen-
sion one.

When talking about Weil divisors, we will only consider schemes
which are

(∗) noetherian, integral, separated, and regular in codimension one.

Definition 1.2. Let X be a scheme satisfying (∗). A prime divisor
Y on X is a closed integral subscheme of codimension one.

A Weil divisor D on X is an element of the free abelian group
DivX generated by the prime divisors.

Thus a Weil divisor is a formal linear combination D =
∑

Y nY Y of
prime divisors, where all but finitely many nY = 0. We say that D is
effective if nY ≥ 0.

Definition 1.3. Let X be a scheme satisfying (∗), and let Y be a prime
divisor, with generic point η. Then OX,η is a discrete valuation ring
with quotient field K.

The valuation νY associated to Y is the corresponding valuation.

Note that as X is separated, Y is determined by its valuation. If
f ∈ K = K(X) and νY (f) > 0 then we say that f has a zero of
order νY (f); if νY (f) < 0 then we say that f has a pole of order
−νY (f).

Definition-Lemma 1.4. Let X be a scheme satisfying (∗), and let
f ∈ K∗.

(f) =
∑
Y

νY (f)Y ∈ DivX.

Proof. We have to show that νY (f) = 0 for all but finitely many Y . Let
U be the open subset where f is regular. Then the only poles of f are
along Z = X−U . As Z is a proper closed subset and X is noetherian,
Z contains only finitely many prime divisors.

Similarly the zeroes of f only occur outside the open subset V where
g = f−1 is regular. �

Any divisor D of the form (f) will be called principal.
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Lemma 1.5. Let X be a scheme satisfying (∗).
The principal divisors are a subgroup of DivX.

Proof. The map

K∗ −→ DivX,

is easily seen to be a group homomorphism. �

Definition 1.6. Two Weil divisors D and D′ are called linearly
equivalent, denoted D ∼ D′, if and only if the difference is prin-
cipal. The group of Weil divisors modulo linear equivalence is called
the divisor Class group, denoted ClX.

We will also denote the group of Weil divisors modulo linear equiv-
alence as An−1(X).

Proposition 1.7. If k is a field then

Cl(Pnk) ' Z.

Proof. Note that if Y is a prime divisor in Pnk then Y is a hypersurface
in Pn, so that I = 〈G〉 and Y is defined by a single homogeneous
polynomial G. The degree of G is called the degree of Y .

If D =
∑
nY Y is a Weil divisor then define the degree degD of D

to be the sum ∑
nY deg Y,

where deg Y is the degree of Y .
Note that the degree of any rational function is zero. Thus there is

a well-defined group homomorphism

deg : Cl(Prk) −→ Z,

and it suffices to prove that this map is an isomorphism. Let H be
defined by X0. Then H is a hyperplane and H has degree one. The
divisor D = nH has degree n and so the degree map is surjective. One
the other hand, if D =

∑
niYi is effective, and Yi is defined by Gi,

(
∏
i

Gni/Xd
0 ) = D − dH,

where d is the degree of D, so that D ∼ dH. �

The next case, at least over an algebraically closed field is a smooth
cubic curve in P2

k. We will need:

Theorem 1.8. A smooth cubic curve is always irrational.
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Example 1.9. Let C be a smooth cubic curve in P2
k. Suppose that the

line Z = 0 is a flex line to the cubic at the point P0 = [0 : 1 : 0]. If
the equation of the cubic is F (X, Y, Z) this says that F (X, Y, 0) = X3.
Therefore the cubic has the form X3 +ZG(X, Y, Z). If we work on the
open subset U3 ' A2

k, then we get

x3 + g(x, y) = 0,

where g(x, y) has degree at most two. If we expand g(x, y) as a polyno-
mial in y,

g0(x)y2 + g1(x)y + g2(x),

then g0(x) must be a non-zero scalar, since otherwise C is singular (a
nodal or cuspidal cubic). We may assume that g0 = 1. If we assume
that the characteristic is not two then we may complete the square to
get

y2 = x3 + g(x),

for some quadratic polynomial g(x). If we assume that the character-
istic is not three then we may complete the cube to get

y2 = x3 + ax+ b,

for some a and b ∈ k.
Now any two sets of three collinear points are linearly equivalent

(since the equation of one line divided by another line is a rational
function on the whole P2

k). In fact given any three points P , Q and P ′

we may find Q′ such that P +Q ∼ P ′ +Q′; indeed the line l = 〈P,Q〉
meets the cubic in one more point R. The line l′ = 〈R,P ′〉 then meets
the cubic in yet another point Q′. We have

P +Q+R ∼ P ′ +Q′ +R′.

Cancelling we get

P +Q ∼ P ′ +Q′.

It follows that if there are further linear equivalences then there are two
points P and P ′ such that P ∼ P ′. This gives us a rational function
f with a single zero P and a single pole P ′; in turn this gives rise to
a morphism C −→ P1 which is an isomorphism. It turns out that a
smooth cubic is not isomorphic to P1, so that in fact the only relations
are those generated by setting two sets of three collinear points to be
linearly equivalent.

Put differently, the rational points of C form an abelian group, where
three points sum to zero if and only if they are collinear, and P0 is
declared to be the identity. The divisors of degree zero modulo linear
equivalence are equal to this group.
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In particular, an elliptic curve is very far from being isomorphic to
P1
k.

It is interesting to calculate the Class group of a toric variety X,
which always satisfies (∗). By assumption there is a dense open subset
U ' Gn

m. The complement Z is a union of the invariant divisors.

Lemma 1.10. Suppose that X satisfies (∗), let Z be a closed subset
and let U = X \ Z.

Then there is an exact sequence

Zk −→ Cl(X) −→ Cl(U) −→ 0,

where k is the number of components of Z which are prime divisors.

Proof. If Y is a prime divisor on X then Y ′ = Y ∩ U is either a prime
divisor on U or empty. This defines a group homomorphism

ρ : Div(X) −→ Div(U).

If Y ′ ⊂ U is a prime divisor then let Y be the closure of Y ′ in X. Then
Y is a prime divisor and Y ′ = Y ∩ U . Thus ρ is surjective. If f is a
rational function on X and Y = (f) then the image of Y in Div(U) is

equal to (f |U). If Z = Z ′ ∪
⋃k
i=1 Zi where Z ′ has codimension at least

two then the map which sends (m1,m2, . . . ,mk) to
∑
miZi generates

the kernel. �

Example 1.11. Let X = P2
k and C be an irreducible curve of degree

d. Then Cl(P2 − C) is equal to Zd. Similarly Cl(An
k) = 0.

It follows by (1.10) that there is an exact sequence

Zk −→ Cl(X) −→ Cl(U) −→ 0.

Applying this to X = An
k it follows that Cl(U) = 0. So we get an

exact sequence

0 −→ K −→ Zs −→ Cl(X) −→ 0.

We want to identify the kernel. This is equal to the set of principal
divisors which are supported on the invariant divisors. If f is a rational
function such that (f) is supported on the invariant divisors then f has
no zeroes or poles on the torus; it follows that f = λχu, where λ ∈ k∗
and u ∈M .

It follows that there is an exact sequence

M −→ Zs −→ Cl(X) −→ 0.
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Lemma 1.12. Let u ∈ M . Suppose that X is the affine toric variety
associated to a cone σ, where σ spans NR. Let v be a primitive generator
of a one dimensional ray τ of σ and let D be the corresponding invariant
divisor.

Then ordD(χu) = 〈u, v〉. In particular

(χu) =
∑
i

〈u, vi〉Di,

where the sum ranges over the invariant divisors.

Proof. We can calculate the order on the open set Uτ = A1
k × Gn−1

m ,
where D corresponds to {0} × Gn−1

m . Using this, we are reduced to
the one dimensional case. So N = Z, v = 1 and u ∈ M = Z. In this
case χu is the monomial xu and the order of vanishing at the origin is
exactly u. �

It follows that if X = X(F ) is the toric variety associated to a fan
F which spans NR then we have a short exact sequence

0 −→M −→ Zs −→ Cl(X) −→ 0.

Example 1.13. Let σ be the cone spanned by 2e1 − e2 and e2 inside
NR = R2. There are two invariant divisors D1 and D2. The principal
divisor associated to u = f1 = (1, 0) is 2D1 and the principal divisor
associated to u = f2 = (0, 1) is D2 −D1. So the class group is Z2.

Note that the dual σ̌ is the cone spanned by f1 and f1 + 2f2. Gener-
ators for the monoid Sσ = σ̌ ∩M are f1, f1 + f2 and f1 + 2f2. So the
group algebra

Aσ = k[x, xy, xy2] =
k[u, v, w]

〈v2 − uw〉
,

and X = Uσ is the quadric cone.
Now suppose we take the standard fan associated to P2. The invari-

ant divisors are the three coordinate lines, D1, D2 and D3. If f1 = (1, 0)
and f2 = (0, 1) then

(χf1) = D1 −D3 and (χf2) = D2 −D3.

So the class group is Z.
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